MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem2 Structured version   Visualization version   GIF version

Theorem ipcnlem2 23263
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
ipcn.x (𝜑𝑋𝑉)
ipcn.y (𝜑𝑌𝑉)
ipcn.1 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
ipcn.2 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
Assertion
Ref Expression
ipcnlem2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)

Proof of Theorem ipcnlem2
StepHypRef Expression
1 ipcn.w . . 3 (𝜑𝑊 ∈ ℂPreHil)
2 ipcn.a . . 3 (𝜑𝐴𝑉)
3 ipcn.b . . 3 (𝜑𝐵𝑉)
4 ipcn.v . . . 4 𝑉 = (Base‘𝑊)
5 ipcn.h . . . 4 , = (·𝑖𝑊)
64, 5cphipcl 23211 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
71, 2, 3, 6syl3anc 1477 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
8 ipcn.x . . 3 (𝜑𝑋𝑉)
9 ipcn.y . . 3 (𝜑𝑌𝑉)
104, 5cphipcl 23211 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ ℂ)
111, 8, 9, 10syl3anc 1477 . 2 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
124, 5cphipcl 23211 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝑌𝑉) → (𝐴 , 𝑌) ∈ ℂ)
131, 2, 9, 12syl3anc 1477 . 2 (𝜑 → (𝐴 , 𝑌) ∈ ℂ)
14 ipcn.r . . 3 (𝜑𝑅 ∈ ℝ+)
1514rpred 12085 . 2 (𝜑𝑅 ∈ ℝ)
167, 13subcld 10604 . . . 4 (𝜑 → ((𝐴 , 𝐵) − (𝐴 , 𝑌)) ∈ ℂ)
1716abscld 14394 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ∈ ℝ)
18 cphnlm 23192 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
191, 18syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
20 nlmngp 22702 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2119, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
22 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
234, 22nmcl 22641 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2421, 2, 23syl2anc 696 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
254, 22nmge0 22642 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
2621, 2, 25syl2anc 696 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
2724, 26ge0p1rpd 12115 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
2827rpred 12085 . . . 4 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ)
29 ngpms 22625 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
3021, 29syl 17 . . . . 5 (𝜑𝑊 ∈ MetSp)
31 ipcn.d . . . . . 6 𝐷 = (dist‘𝑊)
324, 31mscl 22487 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) ∈ ℝ)
3330, 3, 9, 32syl3anc 1477 . . . 4 (𝜑 → (𝐵𝐷𝑌) ∈ ℝ)
3428, 33remulcld 10282 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) ∈ ℝ)
3515rehalfcld 11491 . . 3 (𝜑 → (𝑅 / 2) ∈ ℝ)
3624, 33remulcld 10282 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ∈ ℝ)
37 eqid 2760 . . . . . . . 8 (-g𝑊) = (-g𝑊)
385, 4, 37cphsubdi 23229 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝑌𝑉)) → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
391, 2, 3, 9, 38syl13anc 1479 . . . . . 6 (𝜑 → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
4039fveq2d 6357 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) = (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))))
41 ngpgrp 22624 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
4221, 41syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
434, 37grpsubcl 17716 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝑌𝑉) → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
4442, 3, 9, 43syl3anc 1477 . . . . . . 7 (𝜑 → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
454, 5, 22ipcau 23257 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝐵(-g𝑊)𝑌) ∈ 𝑉) → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
461, 2, 44, 45syl3anc 1477 . . . . . 6 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
4722, 4, 37, 31ngpds 22629 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4821, 3, 9, 47syl3anc 1477 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4948oveq2d 6830 . . . . . 6 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
5046, 49breqtrrd 4832 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
5140, 50eqbrtrrd 4828 . . . 4 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
52 msxms 22480 . . . . . . 7 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5330, 52syl 17 . . . . . 6 (𝜑𝑊 ∈ ∞MetSp)
544, 31xmsge0 22489 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐵𝑉𝑌𝑉) → 0 ≤ (𝐵𝐷𝑌))
5553, 3, 9, 54syl3anc 1477 . . . . 5 (𝜑 → 0 ≤ (𝐵𝐷𝑌))
5624lep1d 11167 . . . . 5 (𝜑 → (𝑁𝐴) ≤ ((𝑁𝐴) + 1))
5724, 28, 33, 55, 56lemul1ad 11175 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
5817, 36, 34, 51, 57letrd 10406 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
59 ipcn.2 . . . . 5 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
60 ipcn.t . . . . 5 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
6159, 60syl6breq 4845 . . . 4 (𝜑 → (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1)))
6233, 35, 27ltmuldiv2d 12133 . . . 4 (𝜑 → ((((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2) ↔ (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1))))
6361, 62mpbird 247 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2))
6417, 34, 35, 58, 63lelttrd 10407 . 2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) < (𝑅 / 2))
6513, 11subcld 10604 . . . 4 (𝜑 → ((𝐴 , 𝑌) − (𝑋 , 𝑌)) ∈ ℂ)
6665abscld 14394 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ∈ ℝ)
674, 31mscl 22487 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) ∈ ℝ)
6830, 2, 8, 67syl3anc 1477 . . . 4 (𝜑 → (𝐴𝐷𝑋) ∈ ℝ)
694, 22nmcl 22641 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
7021, 3, 69syl2anc 696 . . . . 5 (𝜑 → (𝑁𝐵) ∈ ℝ)
7114rphalfcld 12097 . . . . . . . 8 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7271, 27rpdivcld 12102 . . . . . . 7 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
7360, 72syl5eqel 2843 . . . . . 6 (𝜑𝑇 ∈ ℝ+)
7473rpred 12085 . . . . 5 (𝜑𝑇 ∈ ℝ)
7570, 74readdcld 10281 . . . 4 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
7668, 75remulcld 10282 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) ∈ ℝ)
774, 22nmcl 22641 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
7821, 9, 77syl2anc 696 . . . . 5 (𝜑 → (𝑁𝑌) ∈ ℝ)
7968, 78remulcld 10282 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ∈ ℝ)
805, 4, 37cphsubdir 23228 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝑋𝑉𝑌𝑉)) → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
811, 2, 8, 9, 80syl13anc 1479 . . . . . 6 (𝜑 → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
8281fveq2d 6357 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) = (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))))
834, 37grpsubcl 17716 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝑋𝑉) → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
8442, 2, 8, 83syl3anc 1477 . . . . . . 7 (𝜑 → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
854, 5, 22ipcau 23257 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝑋) ∈ 𝑉𝑌𝑉) → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
861, 84, 9, 85syl3anc 1477 . . . . . 6 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
8722, 4, 37, 31ngpds 22629 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8821, 2, 8, 87syl3anc 1477 . . . . . . 7 (𝜑 → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8988oveq1d 6829 . . . . . 6 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) = ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
9086, 89breqtrrd 4832 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
9182, 90eqbrtrrd 4828 . . . 4 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
924, 31xmsge0 22489 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐴𝑉𝑋𝑉) → 0 ≤ (𝐴𝐷𝑋))
9353, 2, 8, 92syl3anc 1477 . . . . 5 (𝜑 → 0 ≤ (𝐴𝐷𝑋))
9478, 70resubcld 10670 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ∈ ℝ)
954, 22, 37nm2dif 22650 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝐵𝑉) → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9621, 9, 3, 95syl3anc 1477 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9722, 4, 37, 31ngpdsr 22630 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9821, 3, 9, 97syl3anc 1477 . . . . . . . 8 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9996, 98breqtrrd 4832 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝐵𝐷𝑌))
10033, 74, 59ltled 10397 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) ≤ 𝑇)
10194, 33, 74, 99, 100letrd 10406 . . . . . 6 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇)
10278, 70, 74lesubadd2d 10838 . . . . . 6 (𝜑 → (((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇)))
103101, 102mpbid 222 . . . . 5 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇))
10478, 75, 68, 93, 103lemul2ad 11176 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
10566, 79, 76, 91, 104letrd 10406 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
106 ipcn.1 . . . . 5 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
107 ipcn.u . . . . 5 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
108106, 107syl6breq 4845 . . . 4 (𝜑 → (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)))
109 0red 10253 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1104, 22nmge0 22642 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
11121, 3, 110syl2anc 696 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐵))
11270, 73ltaddrpd 12118 . . . . . 6 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
113109, 70, 75, 111, 112lelttrd 10407 . . . . 5 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
114 ltmuldiv 11108 . . . . 5 (((𝐴𝐷𝑋) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝐵) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝐵) + 𝑇))) → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
11568, 35, 75, 113, 114syl112anc 1481 . . . 4 (𝜑 → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
116108, 115mpbird 247 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2))
11766, 76, 35, 105, 116lelttrd 10407 . 2 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) < (𝑅 / 2))
1187, 11, 13, 15, 64, 117abs3lemd 14419 1 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  2c2 11282  +crp 12045  abscabs 14193  Basecbs 16079  ·𝑖cip 16168  distcds 16172  Grpcgrp 17643  -gcsg 17645  ∞MetSpcxme 22343  MetSpcmt 22344  normcnm 22602  NrmGrpcngp 22603  NrmModcnlm 22606  ℂPreHilccph 23186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ico 12394  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-topgen 16326  df-xrs 16384  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-ghm 17879  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-rnghom 18937  df-drng 18971  df-subrg 19000  df-staf 19067  df-srng 19068  df-lmod 19087  df-lmhm 19244  df-lvec 19325  df-sra 19394  df-rgmod 19395  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-cnfld 19969  df-phl 20193  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-xms 22346  df-ms 22347  df-nm 22608  df-ngp 22609  df-tng 22610  df-nlm 22612  df-clm 23083  df-cph 23188  df-tch 23189
This theorem is referenced by:  ipcnlem1  23264
  Copyright terms: Public domain W3C validator