![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipassr | Structured version Visualization version GIF version |
Description: "Associative" law for second argument of inner product (compare ipass 20213). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ipass.p | ⊢ × = (.r‘𝐹) |
ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
Ref | Expression |
---|---|
ipassr | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
2 | simpr3 1235 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
3 | simpr2 1233 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
4 | simpr1 1231 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.f | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
9 | ipass.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | ipass.p | . . . . . 6 ⊢ × = (.r‘𝐹) | |
11 | 5, 6, 7, 8, 9, 10 | ipass 20213 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
12 | 1, 2, 3, 4, 11 | syl13anc 1476 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
13 | 12 | fveq2d 6335 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = ( ∗ ‘(𝐶 × (𝐵 , 𝐴)))) |
14 | phllmod 20198 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
15 | 14 | adantr 473 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ LMod) |
16 | 7, 5, 9, 8 | lmodvscl 19096 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐶 · 𝐵) ∈ 𝑉) |
17 | 15, 2, 3, 16 | syl3anc 1474 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐶 · 𝐵) ∈ 𝑉) |
18 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
19 | 5, 6, 7, 18 | ipcj 20202 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 · 𝐵) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
20 | 1, 17, 4, 19 | syl3anc 1474 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
21 | 5 | phlsrng 20199 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
22 | 21 | adantr 473 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐹 ∈ *-Ring) |
23 | 5, 6, 7, 8 | ipcl 20201 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ 𝐾) |
24 | 1, 3, 4, 23 | syl3anc 1474 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐵 , 𝐴) ∈ 𝐾) |
25 | 18, 8, 10 | srngmul 19074 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
26 | 22, 2, 24, 25 | syl3anc 1474 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
27 | 13, 20, 26 | 3eqtr3d 2811 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
28 | 5, 6, 7, 18 | ipcj 20202 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
29 | 1, 3, 4, 28 | syl3anc 1474 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
30 | 29 | oveq1d 6806 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
31 | 27, 30 | eqtrd 2803 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1069 = wceq 1629 ∈ wcel 2143 ‘cfv 6030 (class class class)co 6791 Basecbs 16070 .rcmulr 16156 *𝑟cstv 16157 Scalarcsca 16158 ·𝑠 cvsca 16159 ·𝑖cip 16160 *-Ringcsr 19060 LModclmod 19079 PreHilcphl 20192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-tpos 7502 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-er 7894 df-map 8009 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-ndx 16073 df-slot 16074 df-base 16076 df-sets 16077 df-plusg 16168 df-mulr 16169 df-sca 16171 df-vsca 16172 df-ip 16173 df-0g 16316 df-mgm 17456 df-sgrp 17498 df-mnd 17509 df-mhm 17549 df-ghm 17872 df-mgp 18704 df-ur 18716 df-ring 18763 df-oppr 18837 df-rnghom 18931 df-staf 19061 df-srng 19062 df-lmod 19081 df-lmhm 19241 df-lvec 19322 df-sra 19393 df-rgmod 19394 df-phl 20194 |
This theorem is referenced by: ipassr2 20215 cphassr 23237 tchcphlem2 23260 |
Copyright terms: Public domain | W3C validator |