MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem8 Structured version   Visualization version   GIF version

Theorem ipasslem8 27820
Description: Lemma for ipassi 27824. By ipasslem5 27818, 𝐹 is 0 for all ; since it is continuous and is dense in by qdensere2 22647, we conclude 𝐹 is 0 for all . (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem7.a 𝐴𝑋
ipasslem7.b 𝐵𝑋
ipasslem7.f 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
Assertion
Ref Expression
ipasslem8 𝐹:ℝ⟶{0}
Distinct variable groups:   𝑤,𝐵   𝑤,𝑃   𝑤,𝑆   𝑤,𝑈   𝑤,𝑋   𝑤,𝐴
Allowed substitution hints:   𝐹(𝑤)   𝐺(𝑤)

Proof of Theorem ipasslem8
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0cn 10070 . 2 0 ∈ ℂ
2 qre 11831 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
3 oveq1 6697 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑆𝐴) = (𝑥𝑆𝐴))
43oveq1d 6705 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝑥𝑆𝐴)𝑃𝐵))
5 oveq1 6697 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 · (𝐴𝑃𝐵)) = (𝑥 · (𝐴𝑃𝐵)))
64, 5oveq12d 6708 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
7 ipasslem7.f . . . . . . 7 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
8 ovex 6718 . . . . . . 7 (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) ∈ V
96, 7, 8fvmpt 6321 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
102, 9syl 17 . . . . 5 (𝑥 ∈ ℚ → (𝐹𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
11 ipasslem7.a . . . . . 6 𝐴𝑋
12 qcn 11840 . . . . . . . . 9 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
13 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1413phnvi 27799 . . . . . . . . . 10 𝑈 ∈ NrmCVec
15 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
16 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1715, 16nvscl 27609 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1814, 17mp3an1 1451 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1912, 18sylan 487 . . . . . . . 8 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
20 ipasslem7.b . . . . . . . . 9 𝐵𝑋
21 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2215, 21dipcl 27695 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
2314, 20, 22mp3an13 1455 . . . . . . . 8 ((𝑥𝑆𝐴) ∈ 𝑋 → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
2419, 23syl 17 . . . . . . 7 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
25 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
2615, 25, 16, 21, 13, 20ipasslem5 27818 . . . . . . 7 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
2724, 26subeq0bd 10494 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0)
2811, 27mpan2 707 . . . . 5 (𝑥 ∈ ℚ → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0)
2910, 28eqtrd 2685 . . . 4 (𝑥 ∈ ℚ → (𝐹𝑥) = 0)
3029rgen 2951 . . 3 𝑥 ∈ ℚ (𝐹𝑥) = 0
317funmpt2 5965 . . . 4 Fun 𝐹
32 qssre 11836 . . . . 5 ℚ ⊆ ℝ
33 ovex 6718 . . . . . 6 (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) ∈ V
3433, 7dmmpti 6061 . . . . 5 dom 𝐹 = ℝ
3532, 34sseqtr4i 3671 . . . 4 ℚ ⊆ dom 𝐹
36 funconstss 6375 . . . 4 ((Fun 𝐹 ∧ ℚ ⊆ dom 𝐹) → (∀𝑥 ∈ ℚ (𝐹𝑥) = 0 ↔ ℚ ⊆ (𝐹 “ {0})))
3731, 35, 36mp2an 708 . . 3 (∀𝑥 ∈ ℚ (𝐹𝑥) = 0 ↔ ℚ ⊆ (𝐹 “ {0}))
3830, 37mpbi 220 . 2 ℚ ⊆ (𝐹 “ {0})
39 qdensere 22620 . 2 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
40 eqid 2651 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4140cnfldhaus 22635 . . . 4 (TopOpen‘ℂfld) ∈ Haus
42 haust1 21204 . . . 4 ((TopOpen‘ℂfld) ∈ Haus → (TopOpen‘ℂfld) ∈ Fre)
4341, 42ax-mp 5 . . 3 (TopOpen‘ℂfld) ∈ Fre
44 eqid 2651 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
4515, 25, 16, 21, 13, 11, 20, 7, 44, 40ipasslem7 27819 . . 3 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
46 uniretop 22613 . . . 4 ℝ = (topGen‘ran (,))
4740cnfldtopon 22633 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4847toponunii 20769 . . . 4 ℂ = (TopOpen‘ℂfld)
4946, 48dnsconst 21230 . . 3 ((((TopOpen‘ℂfld) ∈ Fre ∧ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) ∧ (0 ∈ ℂ ∧ ℚ ⊆ (𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)) → 𝐹:ℝ⟶{0})
5043, 45, 49mpanl12 718 . 2 ((0 ∈ ℂ ∧ ℚ ⊆ (𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ) → 𝐹:ℝ⟶{0})
511, 38, 39, 50mp3an 1464 1 𝐹:ℝ⟶{0}
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wss 3607  {csn 4210  cmpt 4762  ccnv 5142  dom cdm 5143  ran crn 5144  cima 5146  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   · cmul 9979  cmin 10304  cq 11826  (,)cioo 12213  TopOpenctopn 16129  topGenctg 16145  fldccnfld 19794  clsccl 20870   Cn ccn 21076  Frect1 21159  Hauscha 21160  NrmCVeccnv 27567   +𝑣 cpv 27568  BaseSetcba 27569   ·𝑠OLD cns 27570  ·𝑖OLDcdip 27683  CPreHilOLDccphlo 27795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-cn 21079  df-cnp 21080  df-t1 21166  df-haus 21167  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ph 27796
This theorem is referenced by:  ipasslem9  27821
  Copyright terms: Public domain W3C validator