MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem1 Structured version   Visualization version   GIF version

Theorem ipasslem1 28020
Description: Lemma for ipassi 28030. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 11503 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2 ax-1cn 10195 . . . . . . . . . . . 12 1 ∈ ℂ
3 ip1i.9 . . . . . . . . . . . . . 14 𝑈 ∈ CPreHilOLD
43phnvi 28005 . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . . . . . . . . 14 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
85, 6, 7nvdir 27820 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
94, 8mpan 662 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
102, 9mp3an2 1559 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
111, 10sylan 561 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
125, 7nvsid 27816 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
134, 12mpan 662 . . . . . . . . . . . 12 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
1413adantl 467 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1514oveq2d 6808 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)) = ((𝑘𝑆𝐴)𝐺𝐴))
1611, 15eqtrd 2804 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺𝐴))
1716oveq1d 6807 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
18 ipasslem1.b . . . . . . . . . . . . 13 𝐵𝑋
19 ip1i.7 . . . . . . . . . . . . . 14 𝑃 = (·𝑖OLD𝑈)
205, 19dipcl 27901 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
214, 18, 20mp3an13 1562 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
2221mulid2d 10259 . . . . . . . . . . 11 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2322adantl 467 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2423oveq2d 6808 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
255, 7nvscl 27815 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
264, 25mp3an1 1558 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
271, 26sylan 561 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
285, 6, 7, 19, 3ipdiri 28019 . . . . . . . . . . 11 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
2918, 28mp3an3 1560 . . . . . . . . . 10 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3027, 29sylancom 568 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3124, 30eqtr4d 2807 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
3217, 31eqtr4d 2807 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))))
33 oveq1 6799 . . . . . . 7 (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3432, 33sylan9eq 2824 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
35 adddir 10232 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
362, 35mp3an2 1559 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
371, 21, 36syl2an 575 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3837adantr 466 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3934, 38eqtr4d 2807 . . . . 5 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
4039exp31 406 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑋 → (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
4140a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
42 eqid 2770 . . . . . 6 (0vec𝑈) = (0vec𝑈)
435, 42, 19dip0l 27907 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
444, 18, 43mp2an 664 . . . 4 ((0vec𝑈)𝑃𝐵) = 0
455, 7, 42nv0 27826 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0𝑆𝐴) = (0vec𝑈))
464, 45mpan 662 . . . . 5 (𝐴𝑋 → (0𝑆𝐴) = (0vec𝑈))
4746oveq1d 6807 . . . 4 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
4821mul02d 10435 . . . 4 (𝐴𝑋 → (0 · (𝐴𝑃𝐵)) = 0)
4944, 47, 483eqtr4a 2830 . . 3 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))
50 oveq1 6799 . . . . . 6 (𝑗 = 0 → (𝑗𝑆𝐴) = (0𝑆𝐴))
5150oveq1d 6807 . . . . 5 (𝑗 = 0 → ((𝑗𝑆𝐴)𝑃𝐵) = ((0𝑆𝐴)𝑃𝐵))
52 oveq1 6799 . . . . 5 (𝑗 = 0 → (𝑗 · (𝐴𝑃𝐵)) = (0 · (𝐴𝑃𝐵)))
5351, 52eqeq12d 2785 . . . 4 (𝑗 = 0 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵))))
5453imbi2d 329 . . 3 (𝑗 = 0 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))))
55 oveq1 6799 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝐴) = (𝑘𝑆𝐴))
5655oveq1d 6807 . . . . 5 (𝑗 = 𝑘 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑘𝑆𝐴)𝑃𝐵))
57 oveq1 6799 . . . . 5 (𝑗 = 𝑘 → (𝑗 · (𝐴𝑃𝐵)) = (𝑘 · (𝐴𝑃𝐵)))
5856, 57eqeq12d 2785 . . . 4 (𝑗 = 𝑘 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))))
5958imbi2d 329 . . 3 (𝑗 = 𝑘 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)))))
60 oveq1 6799 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗𝑆𝐴) = ((𝑘 + 1)𝑆𝐴))
6160oveq1d 6807 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗𝑆𝐴)𝑃𝐵) = (((𝑘 + 1)𝑆𝐴)𝑃𝐵))
62 oveq1 6799 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · (𝐴𝑃𝐵)) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
6361, 62eqeq12d 2785 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵))))
6463imbi2d 329 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
65 oveq1 6799 . . . . . 6 (𝑗 = 𝑁 → (𝑗𝑆𝐴) = (𝑁𝑆𝐴))
6665oveq1d 6807 . . . . 5 (𝑗 = 𝑁 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
67 oveq1 6799 . . . . 5 (𝑗 = 𝑁 → (𝑗 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
6866, 67eqeq12d 2785 . . . 4 (𝑗 = 𝑁 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
6968imbi2d 329 . . 3 (𝑗 = 𝑁 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))))
7041, 49, 54, 59, 64, 69nn0indALT 11674 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
7170imp 393 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  cfv 6031  (class class class)co 6792  cc 10135  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  0cn0 11493  NrmCVeccnv 27773   +𝑣 cpv 27774  BaseSetcba 27775   ·𝑠OLD cns 27776  0veccn0v 27777  ·𝑖OLDcdip 27889  CPreHilOLDccphlo 28001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-grpo 27681  df-gid 27682  df-ginv 27683  df-ablo 27733  df-vc 27748  df-nv 27781  df-va 27784  df-ba 27785  df-sm 27786  df-0v 27787  df-nmcv 27789  df-dip 27890  df-ph 28002
This theorem is referenced by:  ipasslem2  28021  ipasslem3  28022  ipasslem4  28023
  Copyright terms: Public domain W3C validator