MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2subdi Structured version   Visualization version   GIF version

Theorem ip2subdi 20206
Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
ip2subdi.p + = (+g𝐹)
ip2subdi.1 (𝜑𝑊 ∈ PreHil)
ip2subdi.2 (𝜑𝐴𝑉)
ip2subdi.3 (𝜑𝐵𝑉)
ip2subdi.4 (𝜑𝐶𝑉)
ip2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem ip2subdi
StepHypRef Expression
1 eqid 2771 . . . 4 (Base‘𝐹) = (Base‘𝐹)
2 ip2subdi.p . . . 4 + = (+g𝐹)
3 ipsubdir.s . . . 4 𝑆 = (-g𝐹)
4 ip2subdi.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 phllmod 20192 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 phlsrng.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
87lmodring 19081 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
96, 8syl 17 . . . . 5 (𝜑𝐹 ∈ Ring)
10 ringabl 18788 . . . . 5 (𝐹 ∈ Ring → 𝐹 ∈ Abel)
119, 10syl 17 . . . 4 (𝜑𝐹 ∈ Abel)
12 ip2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 ip2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
167, 14, 15, 1ipcl 20195 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
174, 12, 13, 16syl3anc 1476 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
18 ip2subdi.5 . . . . 5 (𝜑𝐷𝑉)
197, 14, 15, 1ipcl 20195 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
204, 12, 18, 19syl3anc 1476 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
21 ip2subdi.3 . . . . 5 (𝜑𝐵𝑉)
227, 14, 15, 1ipcl 20195 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
234, 21, 13, 22syl3anc 1476 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
241, 2, 3, 11, 17, 20, 23ablsubsub4 18431 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) = ((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
2524oveq1d 6808 . 2 (𝜑 → ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
26 ipsubdir.m . . . . . 6 = (-g𝑊)
2715, 26lmodvsubcl 19118 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 𝐷) ∈ 𝑉)
286, 13, 18, 27syl3anc 1476 . . . 4 (𝜑 → (𝐶 𝐷) ∈ 𝑉)
297, 14, 15, 26, 3ipsubdir 20204 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 𝐷) ∈ 𝑉)) → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
304, 12, 21, 28, 29syl13anc 1478 . . 3 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
317, 14, 15, 26, 3ipsubdi 20205 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
324, 12, 13, 18, 31syl13anc 1478 . . . 4 (𝜑 → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
337, 14, 15, 26, 3ipsubdi 20205 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
344, 21, 13, 18, 33syl13anc 1478 . . . 4 (𝜑 → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
3532, 34oveq12d 6811 . . 3 (𝜑 → ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))) = (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))))
36 ringgrp 18760 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
379, 36syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
381, 3grpsubcl 17703 . . . . 5 ((𝐹 ∈ Grp ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
3937, 17, 20, 38syl3anc 1476 . . . 4 (𝜑 → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
407, 14, 15, 1ipcl 20195 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
414, 21, 18, 40syl3anc 1476 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
421, 2, 3, 11, 39, 23, 41ablsubsub 18430 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
4330, 35, 423eqtrd 2809 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
441, 2ringacl 18786 . . . 4 ((𝐹 ∈ Ring ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹)) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
459, 20, 23, 44syl3anc 1476 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
461, 2, 3abladdsub 18427 . . 3 ((𝐹 ∈ Abel ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4711, 17, 41, 45, 46syl13anc 1478 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4825, 43, 473eqtr4d 2815 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152  ·𝑖cip 16154  Grpcgrp 17630  -gcsg 17632  Abelcabl 18401  Ringcrg 18755  LModclmod 19073  PreHilcphl 20186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-ghm 17866  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-rnghom 18925  df-staf 19055  df-srng 19056  df-lmod 19075  df-lmhm 19235  df-lvec 19316  df-sra 19387  df-rgmod 19388  df-phl 20188
This theorem is referenced by:  cph2subdi  23229  ipcau2  23252  tchcphlem1  23253
  Copyright terms: Public domain W3C validator