![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip2eqi | Structured version Visualization version GIF version |
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip2eqi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip2eqi.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ip2eqi | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2eqi.u | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | 1 | phnvi 28011 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
3 | ip2eqi.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | eqid 2771 | . . . . . 6 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
5 | 3, 4 | nvmcl 27841 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
6 | 2, 5 | mp3an1 1559 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
7 | oveq1 6803 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴)) | |
8 | oveq1 6803 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐵) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) | |
9 | 7, 8 | eqeq12d 2786 | . . . . 5 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → ((𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
10 | 9 | rspcv 3456 | . . . 4 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
11 | 6, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
12 | simpl 468 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
13 | simpr 471 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
14 | ip2eqi.7 | . . . . . . . . 9 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
15 | 3, 4, 14 | dipsubdi 28044 | . . . . . . . 8 ⊢ ((𝑈 ∈ CPreHilOLD ∧ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
16 | 1, 15 | mpan 670 | . . . . . . 7 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
17 | 6, 12, 13, 16 | syl3anc 1476 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
18 | 17 | eqeq1d 2773 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0)) |
19 | eqid 2771 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
20 | 3, 19, 14 | ipz 27914 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
21 | 2, 20 | mpan 670 | . . . . . 6 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
22 | 6, 21 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
23 | 18, 22 | bitr3d 270 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
24 | 3, 14 | dipcl 27907 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
25 | 2, 24 | mp3an1 1559 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
26 | 6, 12, 25 | syl2anc 573 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
27 | 3, 14 | dipcl 27907 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
28 | 2, 27 | mp3an1 1559 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
29 | 6, 28 | sylancom 576 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
30 | 26, 29 | subeq0ad 10608 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
31 | 3, 4, 19 | nvmeq0 27853 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
32 | 2, 31 | mp3an1 1559 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
33 | 23, 30, 32 | 3bitr3d 298 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ↔ 𝐴 = 𝐵)) |
34 | 11, 33 | sylibd 229 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → 𝐴 = 𝐵)) |
35 | oveq2 6804 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) | |
36 | 35 | ralrimivw 3116 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) |
37 | 34, 36 | impbid1 215 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 0cc0 10142 − cmin 10472 NrmCVeccnv 27779 BaseSetcba 27781 0veccn0v 27783 −𝑣 cnsb 27784 ·𝑖OLDcdip 27895 CPreHilOLDccphlo 28007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-cn 21252 df-cnp 21253 df-t1 21339 df-haus 21340 df-tx 21586 df-hmeo 21779 df-xms 22345 df-ms 22346 df-tms 22347 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-vs 27794 df-nmcv 27795 df-ims 27796 df-dip 27896 df-ph 28008 |
This theorem is referenced by: phoeqi 28053 |
Copyright terms: Public domain | W3C validator |