Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2dii Structured version   Visualization version   GIF version

Theorem ip2dii 28039
 Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip2dii.1 𝑋 = (BaseSet‘𝑈)
ip2dii.2 𝐺 = ( +𝑣𝑈)
ip2dii.7 𝑃 = (·𝑖OLD𝑈)
ip2dii.u 𝑈 ∈ CPreHilOLD
ip2dii.a 𝐴𝑋
ip2dii.b 𝐵𝑋
ip2dii.c 𝐶𝑋
ip2dii.d 𝐷𝑋
Assertion
Ref Expression
ip2dii ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶)))

Proof of Theorem ip2dii
StepHypRef Expression
1 ip2dii.u . . . 4 𝑈 ∈ CPreHilOLD
2 ip2dii.a . . . . 5 𝐴𝑋
3 ip2dii.c . . . . 5 𝐶𝑋
4 ip2dii.d . . . . 5 𝐷𝑋
52, 3, 43pm3.2i 1423 . . . 4 (𝐴𝑋𝐶𝑋𝐷𝑋)
6 ip2dii.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
7 ip2dii.2 . . . . 5 𝐺 = ( +𝑣𝑈)
8 ip2dii.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
96, 7, 8dipdi 28038 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶𝑋𝐷𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)))
101, 5, 9mp2an 672 . . 3 (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))
11 ip2dii.b . . . . 5 𝐵𝑋
1211, 3, 43pm3.2i 1423 . . . 4 (𝐵𝑋𝐶𝑋𝐷𝑋)
136, 7, 8dipdi 28038 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋𝐷𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
141, 12, 13mp2an 672 . . 3 (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))
1510, 14oveq12i 6808 . 2 ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
161phnvi 28011 . . . . 5 𝑈 ∈ NrmCVec
176, 7nvgcl 27815 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
1816, 3, 4, 17mp3an 1572 . . . 4 (𝐶𝐺𝐷) ∈ 𝑋
192, 11, 183pm3.2i 1423 . . 3 (𝐴𝑋𝐵𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)
206, 7, 8dipdir 28037 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))))
211, 19, 20mp2an 672 . 2 ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))
226, 8dipcl 27907 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
2316, 2, 3, 22mp3an 1572 . . 3 (𝐴𝑃𝐶) ∈ ℂ
246, 8dipcl 27907 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑃𝐷) ∈ ℂ)
2516, 11, 4, 24mp3an 1572 . . 3 (𝐵𝑃𝐷) ∈ ℂ
266, 8dipcl 27907 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐷𝑋) → (𝐴𝑃𝐷) ∈ ℂ)
2716, 2, 4, 26mp3an 1572 . . 3 (𝐴𝑃𝐷) ∈ ℂ
286, 8dipcl 27907 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑃𝐶) ∈ ℂ)
2916, 11, 3, 28mp3an 1572 . . 3 (𝐵𝑃𝐶) ∈ ℂ
3023, 25, 27, 29add42i 10467 . 2 (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
3115, 21, 303eqtr4i 2803 1 ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶)))
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  ‘cfv 6030  (class class class)co 6796  ℂcc 10140   + caddc 10145  NrmCVeccnv 27779   +𝑣 cpv 27780  BaseSetcba 27781  ·𝑖OLDcdip 27895  CPreHilOLDccphlo 28007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-grpo 27687  df-gid 27688  df-ginv 27689  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-nmcv 27795  df-dip 27896  df-ph 28008 This theorem is referenced by:  pythi  28045
 Copyright terms: Public domain W3C validator