![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotacl | Structured version Visualization version GIF version |
Description: Membership law for
descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 5889). If you have a bounded iota-based definition, riotacl2 6664 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
iotacl | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 5907 | . 2 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | |
2 | df-sbc 3469 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | sylib 208 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∃!weu 2498 {cab 2637 [wsbc 3468 ℩cio 5887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 df-sbc 3469 df-un 3612 df-sn 4211 df-pr 4213 df-uni 4469 df-iota 5889 |
This theorem is referenced by: riotacl2 6664 opiota 7273 eroprf 7888 iunfictbso 8975 isf32lem9 9221 psgnvali 17974 fourierdlem36 40678 |
Copyright terms: Public domain | W3C validator |