Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabii Structured version   Visualization version   GIF version

Theorem iotabii 5911
 Description: Formula-building deduction rule for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1 (𝜑𝜓)
Assertion
Ref Expression
iotabii (℩𝑥𝜑) = (℩𝑥𝜓)

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 5898 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
2 iotabii.1 . 2 (𝜑𝜓)
31, 2mpg 1764 1 (℩𝑥𝜑) = (℩𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1523  ℩cio 5887 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-uni 4469  df-iota 5889 This theorem is referenced by:  riotav  6656  ovtpos  7412  cbvsum  14469  cbvprod  14689  oppgid  17832  oppr1  18680  fourierdlem89  40730  fourierdlem90  40731  fourierdlem91  40732  fourierdlem96  40737  fourierdlem97  40738  fourierdlem98  40739  fourierdlem99  40740  fourierdlem100  40741  fourierdlem112  40753
 Copyright terms: Public domain W3C validator