![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction rule for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1895 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 5898 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 = wceq 1523 ℩cio 5887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-uni 4469 df-iota 5889 |
This theorem is referenced by: csbiota 5919 dffv3 6225 fveq1 6228 fveq2 6229 fvres 6245 csbfv12 6269 opabiota 6300 fvco2 6312 fvopab5 6349 riotaeqdv 6652 riotabidv 6653 riotabidva 6667 erov 7887 iunfictbso 8975 isf32lem9 9221 shftval 13858 sumeq1 14463 sumeq2w 14466 sumeq2ii 14467 zsum 14493 isumclim3 14534 isumshft 14615 prodeq1f 14682 prodeq2w 14686 prodeq2ii 14687 zprod 14711 iprodclim3 14775 pcval 15596 grpidval 17307 grpidpropd 17308 gsumvalx 17317 gsumpropd 17319 gsumpropd2lem 17320 gsumress 17323 psgnfval 17966 psgnval 17973 psgndif 19996 dchrptlem1 25034 lgsdchrval 25124 ajval 27845 adjval 28877 resv1r 29965 nosupfv 31977 noeta 31993 bj-finsumval0 33277 uncov 33520 |
Copyright terms: Public domain | W3C validator |