![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooss1 | Structured version Visualization version GIF version |
Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.) |
Ref | Expression |
---|---|
iooss1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo 12383 | . 2 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | xrlelttr 12191 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝑤) → 𝐴 < 𝑤)) | |
3 | 1, 1, 2 | ixxss1 12397 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 ⊆ wss 3721 class class class wbr 4784 (class class class)co 6792 ℝ*cxr 10274 < clt 10275 ≤ cle 10276 (,)cioo 12379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-pre-lttri 10211 ax-pre-lttrn 10212 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-ioo 12383 |
This theorem is referenced by: ioodisj 12508 tgqioo 22822 ioorcl2 23559 itg2gt0 23746 itgsplitioo 23823 ditgcl 23841 ditgswap 23842 ditgsplitlem 23843 dvferm1lem 23966 dvferm 23970 dvlip 23975 dvgt0lem1 23984 dvivthlem1 23990 lhop1lem 23995 lhop2 23997 dvcvx 24002 dvfsumle 24003 dvfsumge 24004 dvfsumabs 24005 ftc1lem1 24017 ftc1a 24019 ftc1lem4 24021 ftc2ditglem 24027 tanregt0 24505 basellem4 25030 pntlemp 25519 radcnvrat 39032 limcresiooub 40386 fourierdlem46 40880 fourierdlem48 40882 fourierdlem49 40883 fourierdlem74 40908 fourierdlem104 40938 fourierdlem113 40947 fouriersw 40959 |
Copyright terms: Public domain | W3C validator |