![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version |
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 22785 | . . 3 ⊢ ran (,) ∈ TopBases | |
2 | bastg 20992 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | ioorebas 12488 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
5 | 3, 4 | sselii 3741 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ⊆ wss 3715 ran crn 5267 ‘cfv 6049 (class class class)co 6814 (,)cioo 12388 topGenctg 16320 TopBasesctb 20971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-ioo 12392 df-topgen 16326 df-bases 20972 |
This theorem is referenced by: icccld 22791 icopnfcld 22792 iocmnfcld 22793 zcld 22837 iccntr 22845 reconnlem1 22850 reconnlem2 22851 icoopnst 22959 iocopnst 22960 dvlip 23975 dvlipcn 23976 dvivthlem1 23990 dvne0 23993 lhop2 23997 lhop 23998 dvfsumle 24003 dvfsumabs 24005 dvfsumlem2 24009 ftc1 24024 dvloglem 24614 advlog 24620 advlogexp 24621 cxpcn3 24709 loglesqrt 24719 lgamgulmlem2 24976 log2sumbnd 25453 dya2iocbrsiga 30667 dya2icobrsiga 30668 poimir 33773 ftc1cnnc 33815 areacirclem1 33831 rfcnpre1 39695 rfcnpre2 39707 ioontr 40257 iocopn 40267 icoopn 40272 islptre 40372 limciccioolb 40374 limcicciooub 40390 limcresiooub 40395 limcresioolb 40396 icccncfext 40621 itgsin0pilem1 40686 itgsbtaddcnst 40719 dirkercncflem2 40842 dirkercncflem3 40843 dirkercncflem4 40844 fourierdlem28 40873 fourierdlem32 40877 fourierdlem33 40878 fourierdlem48 40892 fourierdlem49 40893 fourierdlem56 40900 fourierdlem57 40901 fourierdlem59 40903 fourierdlem60 40904 fourierdlem61 40905 fourierdlem62 40906 fourierdlem68 40912 fourierdlem72 40916 fourierdlem73 40917 fouriersw 40969 iooborel 41090 |
Copyright terms: Public domain | W3C validator |