![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioombl1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ioombl1 23530. (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
ioombl1.b | ⊢ 𝐵 = (𝐴(,)+∞) |
ioombl1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ioombl1.e | ⊢ (𝜑 → 𝐸 ⊆ ℝ) |
ioombl1.v | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
ioombl1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ioombl1.s | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
ioombl1.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
ioombl1.u | ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) |
ioombl1.f1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
ioombl1.f2 | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) |
ioombl1.f3 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
ioombl1.p | ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
ioombl1.q | ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
ioombl1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
ioombl1.h | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
Ref | Expression |
---|---|
ioombl1lem2 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioombl1.f1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2760 | . . . . . . 7 ⊢ ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) | |
3 | ioombl1.s | . . . . . . 7 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
4 | 2, 3 | ovolsf 23441 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
6 | frn 6214 | . . . . 5 ⊢ (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
8 | icossxr 12451 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
9 | 7, 8 | syl6ss 3756 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ*) |
10 | supxrcl 12338 | . . 3 ⊢ (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) |
12 | ioombl1.v | . . 3 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
13 | ioombl1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
14 | 13 | rpred 12065 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
15 | 12, 14 | readdcld 10261 | . 2 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
16 | mnfxr 10288 | . . . 4 ⊢ -∞ ∈ ℝ* | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
18 | ffn 6206 | . . . . . 6 ⊢ (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ) | |
19 | 5, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 Fn ℕ) |
20 | 1nn 11223 | . . . . 5 ⊢ 1 ∈ ℕ | |
21 | fnfvelrn 6519 | . . . . 5 ⊢ ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆) | |
22 | 19, 20, 21 | sylancl 697 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ran 𝑆) |
23 | 9, 22 | sseldd 3745 | . . 3 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ*) |
24 | rge0ssre 12473 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
25 | ffvelrn 6520 | . . . . . 6 ⊢ ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞)) | |
26 | 5, 20, 25 | sylancl 697 | . . . . 5 ⊢ (𝜑 → (𝑆‘1) ∈ (0[,)+∞)) |
27 | 24, 26 | sseldi 3742 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ) |
28 | mnflt 12150 | . . . 4 ⊢ ((𝑆‘1) ∈ ℝ → -∞ < (𝑆‘1)) | |
29 | 27, 28 | syl 17 | . . 3 ⊢ (𝜑 → -∞ < (𝑆‘1)) |
30 | supxrub 12347 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) | |
31 | 9, 22, 30 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) |
32 | 17, 23, 11, 29, 31 | xrltletrd 12185 | . 2 ⊢ (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < )) |
33 | ioombl1.f3 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
34 | xrre 12193 | . 2 ⊢ (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | |
35 | 11, 15, 32, 33, 34 | syl22anc 1478 | 1 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∩ cin 3714 ⊆ wss 3715 ifcif 4230 〈cop 4327 ∪ cuni 4588 class class class wbr 4804 ↦ cmpt 4881 × cxp 5264 ran crn 5267 ∘ ccom 5270 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 1st c1st 7331 2nd c2nd 7332 supcsup 8511 ℝcr 10127 0cc0 10128 1c1 10129 + caddc 10131 +∞cpnf 10263 -∞cmnf 10264 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 − cmin 10458 ℕcn 11212 ℝ+crp 12025 (,)cioo 12368 [,)cico 12370 seqcseq 12995 abscabs 14173 vol*covol 23431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-ico 12374 df-fz 12520 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 |
This theorem is referenced by: ioombl1lem4 23529 |
Copyright terms: Public domain | W3C validator |