![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooltub | Structured version Visualization version GIF version |
Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 12421 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp3 1132 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
3 | 1, 2 | syl6bi 243 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 < 𝐵)) |
4 | 3 | 3impia 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 ℝcr 10137 ℝ*cxr 10275 < clt 10276 (,)cioo 12380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-pre-lttri 10212 ax-pre-lttrn 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-ioo 12384 |
This theorem is referenced by: iooshift 40267 icoopn 40270 iooiinicc 40287 iooltubd 40289 iooiinioc 40301 lptre2pt 40390 limcresiooub 40392 limcresioolb 40393 sinaover2ne0 40597 dvbdfbdioolem1 40661 dvbdfbdioolem2 40662 ioodvbdlimc1lem1 40664 ioodvbdlimc2lem 40667 fourierdlem27 40868 fourierdlem28 40869 fourierdlem40 40881 fourierdlem41 40882 fourierdlem46 40886 fourierdlem48 40888 fourierdlem49 40889 fourierdlem57 40897 fourierdlem59 40899 fourierdlem60 40900 fourierdlem61 40901 fourierdlem62 40902 fourierdlem64 40904 fourierdlem68 40908 fourierdlem73 40913 fourierdlem76 40916 fourierdlem78 40918 fourierdlem84 40924 fourierdlem90 40930 fourierdlem92 40932 fourierdlem97 40937 fourierdlem103 40943 fourierdlem104 40944 fourierdlem111 40951 sqwvfoura 40962 sqwvfourb 40963 fouriersw 40965 etransclem23 40991 qndenserrnbllem 41031 ioorrnopnlem 41041 ioorrnopnxrlem 41043 hspdifhsp 41350 hoiqssbllem1 41356 hoiqssbllem2 41357 hspmbllem2 41361 iunhoiioolem 41409 pimiooltgt 41441 pimdecfgtioo 41447 pimincfltioo 41448 smfaddlem1 41491 smfmullem1 41518 smfmullem2 41519 |
Copyright terms: Public domain | W3C validator |