![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioogtlb | Structured version Visualization version GIF version |
Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ioogtlb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 12330 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp2 1129 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 < 𝐶) | |
3 | 1, 2 | syl6bi 243 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶)) |
4 | 3 | 3impia 1109 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2103 class class class wbr 4760 (class class class)co 6765 ℝcr 10048 ℝ*cxr 10186 < clt 10187 (,)cioo 12289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-pre-lttri 10123 ax-pre-lttrn 10124 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-po 5139 df-so 5140 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-ioo 12293 |
This theorem is referenced by: iocopn 40166 iooshift 40168 iooiinicc 40189 ioogtlbd 40197 iooiinioc 40203 lptre2pt 40292 limcresiooub 40294 limcresioolb 40295 sinaover2ne0 40499 dvbdfbdioolem1 40563 ioodvbdlimc1lem2 40567 fourierdlem27 40771 fourierdlem28 40772 fourierdlem31 40775 fourierdlem33 40777 fourierdlem40 40784 fourierdlem41 40785 fourierdlem46 40789 fourierdlem47 40790 fourierdlem48 40791 fourierdlem49 40792 fourierdlem57 40800 fourierdlem59 40802 fourierdlem60 40803 fourierdlem61 40804 fourierdlem62 40805 fourierdlem64 40807 fourierdlem65 40808 fourierdlem68 40811 fourierdlem73 40816 fourierdlem76 40819 fourierdlem78 40821 fourierdlem84 40827 fourierdlem90 40833 fourierdlem92 40835 fourierdlem97 40840 fourierdlem103 40846 fourierdlem104 40847 fourierdlem111 40854 sqwvfoura 40865 sqwvfourb 40866 fourierswlem 40867 fouriersw 40868 etransclem23 40894 qndenserrnbllem 40934 ioorrnopnlem 40944 ioorrnopnxrlem 40946 hoiqssbllem1 41259 hoiqssbllem2 41260 iunhoiioolem 41312 pimiooltgt 41344 smfaddlem1 41394 smfmullem1 41421 smfmullem2 41422 |
Copyright terms: Public domain | W3C validator |