![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioodvbdlimc2 | Structured version Visualization version GIF version |
Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
ioodvbdlimc2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ioodvbdlimc2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ioodvbdlimc2.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
ioodvbdlimc2.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
ioodvbdlimc2.dvbd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
Ref | Expression |
---|---|
ioodvbdlimc2 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioodvbdlimc2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
3 | ioodvbdlimc2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
5 | simpr 471 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
6 | ioodvbdlimc2.f | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
7 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
8 | ioodvbdlimc2.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
10 | ioodvbdlimc2.dvbd | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) | |
11 | 10 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
12 | fveq2 6332 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥)) | |
13 | 12 | fveq2d 6336 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
14 | 13 | cbvmptv 4882 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
15 | 14 | rneqi 5490 | . . . . 5 ⊢ ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
16 | 15 | supeq1i 8508 | . . . 4 ⊢ sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
17 | eqid 2770 | . . . 4 ⊢ ((⌊‘(1 / (𝐵 − 𝐴))) + 1) = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) | |
18 | oveq2 6800 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗)) | |
19 | 18 | oveq2d 6808 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 − (1 / 𝑘)) = (𝐵 − (1 / 𝑗))) |
20 | 19 | fveq2d 6336 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝐵 − (1 / 𝑘))) = (𝐹‘(𝐵 − (1 / 𝑗)))) |
21 | 20 | cbvmptv 4882 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘)))) = (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) |
22 | 19 | cbvmptv 4882 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑘))) = (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑗))) |
23 | eqid 2770 | . . . 4 ⊢ if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) = if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) | |
24 | biid 251 | . . . 4 ⊢ (((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) ↔ ((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) | |
25 | 2, 4, 5, 7, 9, 11, 16, 17, 21, 22, 23, 24 | ioodvbdlimc2lem 40661 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))) ∈ (𝐹 limℂ 𝐵)) |
26 | ne0i 4067 | . . 3 ⊢ ((lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))) ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) |
28 | ax-resscn 10194 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
30 | 6, 29 | fssd 6197 | . . . . . 6 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
31 | 30 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
32 | simpr 471 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
33 | 1 | rexrd 10290 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
34 | 33 | adantr 466 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ*) |
35 | 3 | rexrd 10290 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
36 | 35 | adantr 466 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ*) |
37 | ioo0 12404 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
38 | 34, 36, 37 | syl2anc 565 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
39 | 32, 38 | mpbird 247 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
40 | 39 | feq2d 6171 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ↔ 𝐹:∅⟶ℂ)) |
41 | 31, 40 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:∅⟶ℂ) |
42 | 3 | recnd 10269 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
43 | 42 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℂ) |
44 | 41, 43 | limcdm0 40362 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐵) = ℂ) |
45 | 0cn 10233 | . . . . 5 ⊢ 0 ∈ ℂ | |
46 | 45 | ne0ii 4069 | . . . 4 ⊢ ℂ ≠ ∅ |
47 | 46 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ℂ ≠ ∅) |
48 | 44, 47 | eqnetrd 3009 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐵) ≠ ∅) |
49 | 27, 48, 1, 3 | ltlecasei 10346 | 1 ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∃wrex 3061 ⊆ wss 3721 ∅c0 4061 ifcif 4223 class class class wbr 4784 ↦ cmpt 4861 dom cdm 5249 ran crn 5250 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 supcsup 8501 ℂcc 10135 ℝcr 10136 0cc0 10137 1c1 10138 + caddc 10140 ℝ*cxr 10274 < clt 10275 ≤ cle 10276 − cmin 10467 / cdiv 10885 2c2 11271 ℤ≥cuz 11887 ℝ+crp 12034 (,)cioo 12379 ⌊cfl 12798 abscabs 14181 lim supclsp 14408 limℂ climc 23845 D cdv 23846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-cmp 21410 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-xms 22344 df-ms 22345 df-tms 22346 df-cncf 22900 df-limc 23849 df-dv 23850 |
This theorem is referenced by: fourierdlem94 40928 fourierdlem113 40947 |
Copyright terms: Public domain | W3C validator |