![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioo2bl | Structured version Visualization version GIF version |
Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
ioo2bl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 10221 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ) | |
2 | 1 | ancoms 455 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) ∈ ℝ) |
3 | 2 | rehalfcld 11481 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) ∈ ℝ) |
4 | resubcl 10547 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
5 | 4 | ancoms 455 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
6 | 5 | rehalfcld 11481 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) / 2) ∈ ℝ) |
7 | remet.1 | . . . 4 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
8 | 7 | bl2ioo 22815 | . . 3 ⊢ ((((𝐵 + 𝐴) / 2) ∈ ℝ ∧ ((𝐵 − 𝐴) / 2) ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)))) |
9 | 3, 6, 8 | syl2anc 573 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)))) |
10 | recn 10228 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
11 | recn 10228 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
12 | addcom 10424 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) | |
13 | 10, 11, 12 | syl2anr 584 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
14 | 13 | oveq1d 6808 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) / 2) = ((𝐴 + 𝐵) / 2)) |
15 | 14 | oveq1d 6808 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2)) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
16 | halfaddsub 11467 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴)) | |
17 | 10, 11, 16 | syl2anr 584 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵 ∧ (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴)) |
18 | 17 | simprd 483 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2)) = 𝐴) |
19 | 17 | simpld 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2)) = 𝐵) |
20 | 18, 19 | oveq12d 6811 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐵 + 𝐴) / 2) − ((𝐵 − 𝐴) / 2))(,)(((𝐵 + 𝐴) / 2) + ((𝐵 − 𝐴) / 2))) = (𝐴(,)𝐵)) |
21 | 9, 15, 20 | 3eqtr3rd 2814 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 × cxp 5247 ↾ cres 5251 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 ℝcr 10137 + caddc 10141 − cmin 10468 / cdiv 10886 2c2 11272 (,)cioo 12380 abscabs 14182 ballcbl 19948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-xadd 12152 df-ioo 12384 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 |
This theorem is referenced by: ioo2blex 22817 |
Copyright terms: Public domain | W3C validator |