MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocssicc Structured version   Visualization version   GIF version

Theorem iocssicc 12425
Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Assertion
Ref Expression
iocssicc (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)

Proof of Theorem iocssicc
Dummy variables 𝑎 𝑏 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 12344 . 2 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥𝑏)})
2 df-icc 12346 . 2 [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎𝑥𝑥𝑏)})
3 xrltle 12146 . 2 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
4 idd 24 . 2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝐵𝑤𝐵))
51, 2, 3, 4ixxssixx 12353 1 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 383  wcel 2127  wss 3703   class class class wbr 4792  (class class class)co 6801  *cxr 10236   < clt 10237  cle 10238  (,]cioc 12340  [,]cicc 12342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-pre-lttri 10173  ax-pre-lttrn 10174
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-po 5175  df-so 5176  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-ioc 12344  df-icc 12346
This theorem is referenced by:  xrge0iifcnv  30259  xrge0iifcv  30260  xrge0iifhom  30263  pnfneige0  30277  lmxrge0  30278  eliccelioc  40219  limcicciooub  40341  fourierdlem17  40813  fourierdlem35  40831  fourierdlem41  40837  fourierdlem48  40843  fourierdlem49  40844  fourierdlem51  40846  fourierdlem71  40866  fourierdlem102  40897  fourierdlem114  40909
  Copyright terms: Public domain W3C validator