MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocmnfcld Structured version   Visualization version   GIF version

Theorem iocmnfcld 22791
Description: Left-unbounded closed intervals are closed sets of the standard topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
iocmnfcld (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem iocmnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10297 . . . . . . 7 -∞ ∈ ℝ*
21a1i 11 . . . . . 6 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10286 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10293 . . . . . . 7 +∞ ∈ ℝ*
54a1i 11 . . . . . 6 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12161 . . . . . 6 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12158 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioc 12384 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
9 df-ioo 12383 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
10 xrltnle 10306 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
11 xrlelttr 12191 . . . . . . 7 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrlttr 12177 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴 < 𝑤) → -∞ < 𝑤))
138, 9, 10, 9, 11, 12ixxun 12395 . . . . . 6 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1483 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
15 ioomax 12452 . . . . 5 (-∞(,)+∞) = ℝ
1614, 15syl6eq 2820 . . . 4 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ)
17 iocssre 12457 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ)
181, 17mpan 662 . . . . 5 (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ)
198, 9, 10ixxdisj 12394 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
202, 3, 5, 19syl3anc 1475 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
21 uneqdifeq 4197 . . . . 5 (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2218, 20, 21syl2anc 565 . . . 4 (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2316, 22mpbid 222 . . 3 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))
24 iooretop 22788 . . 3 (𝐴(,)+∞) ∈ (topGen‘ran (,))
2523, 24syl6eqel 2857 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))
26 retop 22784 . . 3 (topGen‘ran (,)) ∈ Top
27 uniretop 22785 . . . 4 ℝ = (topGen‘ran (,))
2827iscld2 21052 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
2926, 18, 28sylancr 567 . 2 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
3025, 29mpbird 247 1 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1630  wcel 2144  cdif 3718  cun 3719  cin 3720  wss 3721  c0 4061   class class class wbr 4784  ran crn 5250  cfv 6031  (class class class)co 6792  cr 10136  +∞cpnf 10272  -∞cmnf 10273  *cxr 10274   < clt 10275  cle 10276  (,)cioo 12379  (,]cioc 12380  topGenctg 16305  Topctop 20917  Clsdccld 21040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-ioo 12383  df-ioc 12384  df-topgen 16311  df-top 20918  df-bases 20970  df-cld 21043
This theorem is referenced by:  logdmopn  24615  orvclteel  30868  dvasin  33821  dvacos  33822  dvreasin  33823  dvreacos  33824  rfcnpre4  39709
  Copyright terms: Public domain W3C validator