Mathbox for Jon Pennant < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocmbl Structured version   Visualization version   GIF version

Theorem iocmbl 38324
 Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocmbl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)

Proof of Theorem iocmbl
StepHypRef Expression
1 rexr 10291 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 ioounsn 38321 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
31, 2syl3an2 1167 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
4 ioombl 23553 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
5 iccid 12425 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
61, 5syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) = {𝐵})
7 iccmbl 23554 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,]𝐵) ∈ dom vol)
87anidms 556 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵[,]𝐵) ∈ dom vol)
96, 8eqeltrrd 2851 . . . . . . 7 (𝐵 ∈ ℝ → {𝐵} ∈ dom vol)
109adantl 467 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → {𝐵} ∈ dom vol)
11 unmbl 23525 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
124, 10, 11sylancr 575 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
13123adant3 1126 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ dom vol)
143, 13eqeltrrd 2851 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
15143expa 1111 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
16 id 22 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
17 xrlenlt 10309 . . . . . 6 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
181, 16, 17syl2anr 584 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1918biimp3ar 1581 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
20 ioc0 12427 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
2120biimp3ar 1581 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → (𝐴(,]𝐵) = ∅)
221, 21syl3an2 1167 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) = ∅)
23 0mbl 23527 . . . . 5 ∅ ∈ dom vol
2422, 23syl6eqel 2858 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴) → (𝐴(,]𝐵) ∈ dom vol)
2519, 24syld3an3 1515 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
26253expa 1111 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,]𝐵) ∈ dom vol)
2715, 26pm2.61dan 814 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ∪ cun 3721  ∅c0 4063  {csn 4317   class class class wbr 4787  dom cdm 5250  (class class class)co 6796  ℝcr 10141  ℝ*cxr 10279   < clt 10280   ≤ cle 10281  (,)cioo 12380  (,]cioc 12381  [,]cicc 12383  volcvol 23451 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-xadd 12152  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-xmet 19954  df-met 19955  df-ovol 23452  df-vol 23453 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator