MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invsym2 Structured version   Visualization version   GIF version

Theorem invsym2 16417
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invsym2 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))

Proof of Theorem invsym2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.y . . . . 5 (𝜑𝑌𝐵)
5 invfval.x . . . . 5 (𝜑𝑋𝐵)
6 eqid 2621 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
71, 2, 3, 4, 5, 6invss 16415 . . . 4 (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
8 relxp 5225 . . . 4 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
9 relss 5204 . . . 4 ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋)))
107, 8, 9mpisyl 21 . . 3 (𝜑 → Rel (𝑌𝑁𝑋))
11 relcnv 5501 . . 3 Rel (𝑋𝑁𝑌)
1210, 11jctil 560 . 2 (𝜑 → (Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)))
131, 2, 3, 5, 4invsym 16416 . . . 4 (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔𝑔(𝑌𝑁𝑋)𝑓))
14 vex 3201 . . . . . 6 𝑔 ∈ V
15 vex 3201 . . . . . 6 𝑓 ∈ V
1614, 15brcnv 5303 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓𝑓(𝑋𝑁𝑌)𝑔)
17 df-br 4652 . . . . 5 (𝑔(𝑋𝑁𝑌)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
1816, 17bitr3i 266 . . . 4 (𝑓(𝑋𝑁𝑌)𝑔 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌))
19 df-br 4652 . . . 4 (𝑔(𝑌𝑁𝑋)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋))
2013, 18, 193bitr3g 302 . . 3 (𝜑 → (⟨𝑔, 𝑓⟩ ∈ (𝑋𝑁𝑌) ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑌𝑁𝑋)))
2120eqrelrdv2 5217 . 2 (((Rel (𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → (𝑋𝑁𝑌) = (𝑌𝑁𝑋))
2212, 21mpancom 703 1 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  wss 3572  cop 4181   class class class wbr 4651   × cxp 5110  ccnv 5111  Rel wrel 5117  cfv 5886  (class class class)co 6647  Basecbs 15851  Hom chom 15946  Catccat 16319  Invcinv 16399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-1st 7165  df-2nd 7166  df-sect 16401  df-inv 16402
This theorem is referenced by:  invf  16422  invf1o  16423  invinv  16424  cicsym  16458
  Copyright terms: Public domain W3C validator