![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invsym2 | Structured version Visualization version GIF version |
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
invsym2 | ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | eqid 2770 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | invss 16627 | . . . 4 ⊢ (𝜑 → (𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
8 | relxp 5266 | . . . 4 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
9 | relss 5346 | . . . 4 ⊢ ((𝑌𝑁𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑁𝑋))) | |
10 | 7, 8, 9 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel (𝑌𝑁𝑋)) |
11 | relcnv 5644 | . . 3 ⊢ Rel ◡(𝑋𝑁𝑌) | |
12 | 10, 11 | jctil 503 | . 2 ⊢ (𝜑 → (Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋))) |
13 | 1, 2, 3, 5, 4 | invsym 16628 | . . . 4 ⊢ (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ 𝑔(𝑌𝑁𝑋)𝑓)) |
14 | vex 3352 | . . . . . 6 ⊢ 𝑔 ∈ V | |
15 | vex 3352 | . . . . . 6 ⊢ 𝑓 ∈ V | |
16 | 14, 15 | brcnv 5443 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 𝑓(𝑋𝑁𝑌)𝑔) |
17 | df-br 4785 | . . . . 5 ⊢ (𝑔◡(𝑋𝑁𝑌)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) | |
18 | 16, 17 | bitr3i 266 | . . . 4 ⊢ (𝑓(𝑋𝑁𝑌)𝑔 ↔ 〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌)) |
19 | df-br 4785 | . . . 4 ⊢ (𝑔(𝑌𝑁𝑋)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋)) | |
20 | 13, 18, 19 | 3bitr3g 302 | . . 3 ⊢ (𝜑 → (〈𝑔, 𝑓〉 ∈ ◡(𝑋𝑁𝑌) ↔ 〈𝑔, 𝑓〉 ∈ (𝑌𝑁𝑋))) |
21 | 20 | eqrelrdv2 5359 | . 2 ⊢ (((Rel ◡(𝑋𝑁𝑌) ∧ Rel (𝑌𝑁𝑋)) ∧ 𝜑) → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
22 | 12, 21 | mpancom 660 | 1 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 〈cop 4320 class class class wbr 4784 × cxp 5247 ◡ccnv 5248 Rel wrel 5254 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 Hom chom 16159 Catccat 16531 Invcinv 16611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-sect 16613 df-inv 16614 |
This theorem is referenced by: invf 16634 invf1o 16635 invinv 16636 cicsym 16670 |
Copyright terms: Public domain | W3C validator |