![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inviso2 | Structured version Visualization version GIF version |
Description: If 𝐺 is an inverse to 𝐹, then 𝐺 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
inviso1.1 | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Ref | Expression |
---|---|
inviso2 | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . 2 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | invfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | isoval.n | . 2 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | inviso1.1 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
8 | 1, 2, 3, 5, 4 | invsym 16629 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐺(𝑌𝑁𝑋)𝐹)) |
9 | 7, 8 | mpbid 222 | . 2 ⊢ (𝜑 → 𝐺(𝑌𝑁𝑋)𝐹) |
10 | 1, 2, 3, 4, 5, 6, 9 | inviso1 16633 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐼𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 Catccat 16532 Invcinv 16612 Isociso 16613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-cat 16536 df-cid 16537 df-sect 16614 df-inv 16615 df-iso 16616 |
This theorem is referenced by: yonffthlem 17130 |
Copyright terms: Public domain | W3C validator |