![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inviso1 | Structured version Visualization version GIF version |
Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
inviso1.1 | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Ref | Expression |
---|---|
inviso1 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | invfun 16625 | . . . 4 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
7 | funrel 6066 | . . . 4 ⊢ (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) |
9 | inviso1.1 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
10 | releldm 5513 | . . 3 ⊢ ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌)) | |
11 | 8, 9, 10 | syl2anc 696 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑋𝑁𝑌)) |
12 | isoval.n | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
13 | 1, 2, 3, 4, 5, 12 | isoval 16626 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
14 | 11, 13 | eleqtrrd 2842 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 dom cdm 5266 Rel wrel 5271 Fun wfun 6043 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 Catccat 16526 Invcinv 16606 Isociso 16607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-cat 16530 df-cid 16531 df-sect 16608 df-inv 16609 df-iso 16610 |
This theorem is referenced by: inviso2 16628 isoco 16638 idiso 16649 cicref 16662 funciso 16735 ffthiso 16790 fuciso 16836 initoeu1 16862 termoeu1 16869 catciso 16958 yoneda 17124 |
Copyright terms: Public domain | W3C validator |