MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invghm Structured version   Visualization version   GIF version

Theorem invghm 18410
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b 𝐵 = (Base‘𝐺)
invghm.m 𝐼 = (invg𝐺)
Assertion
Ref Expression
invghm (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem invghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2748 . . 3 (+g𝐺) = (+g𝐺)
3 ablgrp 18369 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
4 invghm.m . . . . 5 𝐼 = (invg𝐺)
51, 4grpinvf 17638 . . . 4 (𝐺 ∈ Grp → 𝐼:𝐵𝐵)
63, 5syl 17 . . 3 (𝐺 ∈ Abel → 𝐼:𝐵𝐵)
71, 2, 4ablinvadd 18386 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥𝐵𝑦𝐵) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
873expb 1113 . . 3 ((𝐺 ∈ Abel ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
91, 1, 2, 2, 3, 3, 6, 8isghmd 17841 . 2 (𝐺 ∈ Abel → 𝐼 ∈ (𝐺 GrpHom 𝐺))
10 ghmgrp1 17834 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Grp)
1110adantr 472 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
12 simprr 813 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
13 simprl 811 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
141, 2, 4grpinvadd 17665 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1511, 12, 13, 14syl3anc 1463 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1615fveq2d 6344 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))))
17 simpl 474 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ (𝐺 GrpHom 𝐺))
181, 4grpinvcl 17639 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼𝑥) ∈ 𝐵)
1911, 13, 18syl2anc 696 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑥) ∈ 𝐵)
201, 4grpinvcl 17639 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼𝑦) ∈ 𝐵)
2111, 12, 20syl2anc 696 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑦) ∈ 𝐵)
221, 2, 2ghmlin 17837 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝐼𝑥) ∈ 𝐵 ∧ (𝐼𝑦) ∈ 𝐵) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
2317, 19, 21, 22syl3anc 1463 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
241, 4grpinvinv 17654 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼‘(𝐼𝑥)) = 𝑥)
2511, 13, 24syl2anc 696 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑥)) = 𝑥)
261, 4grpinvinv 17654 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼‘(𝐼𝑦)) = 𝑦)
2711, 12, 26syl2anc 696 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑦)) = 𝑦)
2825, 27oveq12d 6819 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))) = (𝑥(+g𝐺)𝑦))
2916, 23, 283eqtrd 2786 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑥(+g𝐺)𝑦))
301, 2grpcl 17602 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
3111, 12, 13, 30syl3anc 1463 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
321, 4grpinvinv 17654 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑥) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3311, 31, 32syl2anc 696 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3429, 33eqtr3d 2784 . . . 4 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
3534ralrimivva 3097 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
361, 2isabl2 18372 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
3710, 35, 36sylanbrc 701 . 2 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Abel)
389, 37impbii 199 1 (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1620  wcel 2127  wral 3038  wf 6033  cfv 6037  (class class class)co 6801  Basecbs 16030  +gcplusg 16114  Grpcgrp 17594  invgcminusg 17595   GrpHom cghm 17829  Abelcabl 18365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-ghm 17830  df-cmn 18366  df-abl 18367
This theorem is referenced by:  gsuminv  18517  invlmhm  19215  tsmsinv  22123
  Copyright terms: Public domain W3C validator