MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfun Structured version   Visualization version   GIF version

Theorem invfun 16631
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invfun (𝜑 → Fun (𝑋𝑁𝑌))

Proof of Theorem invfun
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2771 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
71, 2, 3, 4, 5, 6invss 16628 . . 3 (𝜑 → (𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)))
8 relxp 5266 . . 3 Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋))
9 relss 5346 . . 3 ((𝑋𝑁𝑌) ⊆ ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → (Rel ((𝑋(Hom ‘𝐶)𝑌) × (𝑌(Hom ‘𝐶)𝑋)) → Rel (𝑋𝑁𝑌)))
107, 8, 9mpisyl 21 . 2 (𝜑 → Rel (𝑋𝑁𝑌))
11 eqid 2771 . . . . . 6 (Sect‘𝐶) = (Sect‘𝐶)
123adantr 466 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝐶 ∈ Cat)
135adantr 466 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑌𝐵)
144adantr 466 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑋𝐵)
151, 2, 3, 4, 5, 11isinv 16627 . . . . . . . 8 (𝜑 → (𝑓(𝑋𝑁𝑌)𝑔 ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)𝑔𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)))
1615simplbda 487 . . . . . . 7 ((𝜑𝑓(𝑋𝑁𝑌)𝑔) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)
1716adantrr 696 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝑓)
181, 2, 3, 4, 5, 11isinv 16627 . . . . . . . 8 (𝜑 → (𝑓(𝑋𝑁𝑌) ↔ (𝑓(𝑋(Sect‘𝐶)𝑌)(𝑌(Sect‘𝐶)𝑋)𝑓)))
1918simprbda 486 . . . . . . 7 ((𝜑𝑓(𝑋𝑁𝑌)) → 𝑓(𝑋(Sect‘𝐶)𝑌))
2019adantrl 695 . . . . . 6 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑓(𝑋(Sect‘𝐶)𝑌))
211, 11, 12, 13, 14, 17, 20sectcan 16622 . . . . 5 ((𝜑 ∧ (𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌))) → 𝑔 = )
2221ex 397 . . . 4 (𝜑 → ((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
2322alrimiv 2007 . . 3 (𝜑 → ∀((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
2423alrimivv 2008 . 2 (𝜑 → ∀𝑓𝑔((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = ))
25 dffun2 6041 . 2 (Fun (𝑋𝑁𝑌) ↔ (Rel (𝑋𝑁𝑌) ∧ ∀𝑓𝑔((𝑓(𝑋𝑁𝑌)𝑔𝑓(𝑋𝑁𝑌)) → 𝑔 = )))
2610, 24, 25sylanbrc 572 1 (𝜑 → Fun (𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629   = wceq 1631  wcel 2145  wss 3723   class class class wbr 4786   × cxp 5247  Rel wrel 5254  Fun wfun 6025  cfv 6031  (class class class)co 6793  Basecbs 16064  Hom chom 16160  Catccat 16532  Sectcsect 16611  Invcinv 16612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-cat 16536  df-cid 16537  df-sect 16614  df-inv 16615
This theorem is referenced by:  inviso1  16633  invf  16635  invco  16638  idinv  16656  funciso  16741  ffthiso  16796  fuciso  16842  setciso  16948  catciso  16964  rngciso  42510  rngcisoALTV  42522  ringciso  42561  ringcisoALTV  42585
  Copyright terms: Public domain W3C validator