![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invffval | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
invffval | ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.n | . 2 ⊢ 𝑁 = (Inv‘𝐶) | |
2 | invfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6353 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
4 | invfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | syl6eqr 2812 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | fveq2 6353 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶)) | |
7 | invfval.s | . . . . . . . 8 ⊢ 𝑆 = (Sect‘𝐶) | |
8 | 6, 7 | syl6eqr 2812 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆) |
9 | 8 | oveqd 6831 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦)) |
10 | 8 | oveqd 6831 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥)) |
11 | 10 | cnveqd 5453 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ◡(𝑦(Sect‘𝑐)𝑥) = ◡(𝑦𝑆𝑥)) |
12 | 9, 11 | ineq12d 3958 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) |
13 | 5, 5, 12 | mpt2eq123dv 6883 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
14 | df-inv 16629 | . . . 4 ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) | |
15 | fvex 6363 | . . . . . 6 ⊢ (Base‘𝐶) ∈ V | |
16 | 4, 15 | eqeltri 2835 | . . . . 5 ⊢ 𝐵 ∈ V |
17 | 16, 16 | mpt2ex 7416 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) ∈ V |
18 | 13, 14, 17 | fvmpt 6445 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
19 | 2, 18 | syl 17 | . 2 ⊢ (𝜑 → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
20 | 1, 19 | syl5eq 2806 | 1 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ◡ccnv 5265 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 Basecbs 16079 Catccat 16546 Sectcsect 16625 Invcinv 16626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-inv 16629 |
This theorem is referenced by: invfval 16640 isoval 16646 |
Copyright terms: Public domain | W3C validator |