Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdif Structured version   Visualization version   GIF version

Theorem invdif 4017
 Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)

Proof of Theorem invdif
StepHypRef Expression
1 dfin2 4009 . 2 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵)))
2 ddif 3893 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
32difeq2i 3876 . 2 (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴𝐵)
41, 3eqtri 2793 1 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1631  Vcvv 3351   ∖ cdif 3720   ∩ cin 3722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3726  df-in 3730 This theorem is referenced by:  indif2  4019  difundi  4028  difundir  4029  difindi  4030  difindir  4031  difdif2  4033  difun1  4036  undif1  4185  difdifdir  4198  frnsuppeq  7458  dfsup2  8506  fsets  16098  setsdm  16099
 Copyright terms: Public domain W3C validator