![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intv | Structured version Visualization version GIF version |
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
Ref | Expression |
---|---|
intv | ⊢ ∩ V = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4823 | . 2 ⊢ ∅ ∈ V | |
2 | int0el 4540 | . 2 ⊢ (∅ ∈ V → ∩ V = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ V = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 ∩ cint 4507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-nul 3949 df-int 4508 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |