![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intopval | Structured version Visualization version GIF version |
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
intopval | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-intop 42363 | . . 3 ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑𝑚 (𝑚 × 𝑚))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑𝑚 (𝑚 × 𝑚)))) |
3 | simpr 471 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
4 | simpl 468 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀) | |
5 | 4 | sqxpeqd 5281 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀)) |
6 | 3, 5 | oveq12d 6811 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑛 ↑𝑚 (𝑚 × 𝑚)) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
7 | 6 | adantl 467 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁)) → (𝑛 ↑𝑚 (𝑚 × 𝑚)) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
8 | elex 3364 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
9 | 8 | adantr 466 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑀 ∈ V) |
10 | elex 3364 | . . 3 ⊢ (𝑁 ∈ 𝑊 → 𝑁 ∈ V) | |
11 | 10 | adantl 467 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑁 ∈ V) |
12 | ovexd 6825 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑁 ↑𝑚 (𝑀 × 𝑀)) ∈ V) | |
13 | 2, 7, 9, 11, 12 | ovmpt2d 6935 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑𝑚 (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 × cxp 5247 (class class class)co 6793 ↦ cmpt2 6795 ↑𝑚 cmap 8009 intOp cintop 42360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-intop 42363 |
This theorem is referenced by: intop 42367 clintopval 42368 |
Copyright terms: Public domain | W3C validator |