Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intopval Structured version   Visualization version   GIF version

Theorem intopval 42366
Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intopval ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁𝑚 (𝑀 × 𝑀)))

Proof of Theorem intopval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 42363 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛𝑚 (𝑚 × 𝑚)))
21a1i 11 . 2 ((𝑀𝑉𝑁𝑊) → intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛𝑚 (𝑚 × 𝑚))))
3 simpr 471 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑛 = 𝑁)
4 simpl 468 . . . . 5 ((𝑚 = 𝑀𝑛 = 𝑁) → 𝑚 = 𝑀)
54sqxpeqd 5281 . . . 4 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑚 × 𝑚) = (𝑀 × 𝑀))
63, 5oveq12d 6811 . . 3 ((𝑚 = 𝑀𝑛 = 𝑁) → (𝑛𝑚 (𝑚 × 𝑚)) = (𝑁𝑚 (𝑀 × 𝑀)))
76adantl 467 . 2 (((𝑀𝑉𝑁𝑊) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (𝑛𝑚 (𝑚 × 𝑚)) = (𝑁𝑚 (𝑀 × 𝑀)))
8 elex 3364 . . 3 (𝑀𝑉𝑀 ∈ V)
98adantr 466 . 2 ((𝑀𝑉𝑁𝑊) → 𝑀 ∈ V)
10 elex 3364 . . 3 (𝑁𝑊𝑁 ∈ V)
1110adantl 467 . 2 ((𝑀𝑉𝑁𝑊) → 𝑁 ∈ V)
12 ovexd 6825 . 2 ((𝑀𝑉𝑁𝑊) → (𝑁𝑚 (𝑀 × 𝑀)) ∈ V)
132, 7, 9, 11, 12ovmpt2d 6935 1 ((𝑀𝑉𝑁𝑊) → (𝑀 intOp 𝑁) = (𝑁𝑚 (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351   × cxp 5247  (class class class)co 6793  cmpt2 6795  𝑚 cmap 8009   intOp cintop 42360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-intop 42363
This theorem is referenced by:  intop  42367  clintopval  42368
  Copyright terms: Public domain W3C validator