![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intmin | Structured version Visualization version GIF version |
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
intmin | ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3335 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | elintrab 4632 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥)) |
3 | ssid 3757 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
4 | sseq2 3760 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐴)) | |
5 | eleq2 2820 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)) | |
6 | 4, 5 | imbi12d 333 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) ↔ (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
7 | 6 | rspcv 3437 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
8 | 3, 7 | mpii 46 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴)) |
9 | 2, 8 | syl5bi 232 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝑦 ∈ 𝐴)) |
10 | 9 | ssrdv 3742 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ⊆ 𝐴) |
11 | ssintub 4639 | . . 3 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} | |
12 | 11 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}) |
13 | 10, 12 | eqssd 3753 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 ∈ wcel 2131 ∀wral 3042 {crab 3046 ⊆ wss 3707 ∩ cint 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rab 3051 df-v 3334 df-in 3714 df-ss 3721 df-int 4620 |
This theorem is referenced by: intmin2 4648 ordintdif 5927 bm2.5ii 7163 onsucmin 7178 rankonidlem 8856 rankval4 8895 mrcid 16467 lspid 19176 aspid 19524 cldcls 21040 spanid 28507 chsupid 28572 igenidl2 34169 pclidN 35677 diaocN 36908 |
Copyright terms: Public domain | W3C validator |