![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intimass | Structured version Visualization version GIF version |
Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intimass | ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 3092 | . . 3 ⊢ (∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎 → ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | |
2 | elimaint 38257 | . . 3 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) | |
3 | elintima 38262 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | |
4 | 1, 2, 3 | 3imtr4i 281 | . 2 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) → 𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)}) |
5 | 4 | ssriv 3640 | 1 ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 〈cop 4216 ∩ cint 4507 “ cima 5146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: intimass2 38264 |
Copyright terms: Public domain | W3C validator |