MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intgru Structured version   Visualization version   GIF version

Theorem intgru 9674
Description: The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
intgru ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Univ)

Proof of Theorem intgru
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . 3 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2 intex 4850 . . 3 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
31, 2sylib 208 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
4 dfss3 3625 . . . . 5 (𝐴 ⊆ Univ ↔ ∀𝑢𝐴 𝑢 ∈ Univ)
5 grutr 9653 . . . . . 6 (𝑢 ∈ Univ → Tr 𝑢)
65ralimi 2981 . . . . 5 (∀𝑢𝐴 𝑢 ∈ Univ → ∀𝑢𝐴 Tr 𝑢)
74, 6sylbi 207 . . . 4 (𝐴 ⊆ Univ → ∀𝑢𝐴 Tr 𝑢)
8 trint 4801 . . . 4 (∀𝑢𝐴 Tr 𝑢 → Tr 𝐴)
97, 8syl 17 . . 3 (𝐴 ⊆ Univ → Tr 𝐴)
109adantr 480 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → Tr 𝐴)
11 grupw 9655 . . . . . . . . . 10 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → 𝒫 𝑥𝑢)
1211ex 449 . . . . . . . . 9 (𝑢 ∈ Univ → (𝑥𝑢 → 𝒫 𝑥𝑢))
1312ral2imi 2976 . . . . . . . 8 (∀𝑢𝐴 𝑢 ∈ Univ → (∀𝑢𝐴 𝑥𝑢 → ∀𝑢𝐴 𝒫 𝑥𝑢))
14 vex 3234 . . . . . . . . 9 𝑥 ∈ V
1514elint2 4514 . . . . . . . 8 (𝑥 𝐴 ↔ ∀𝑢𝐴 𝑥𝑢)
16 vpwex 4879 . . . . . . . . 9 𝒫 𝑥 ∈ V
1716elint2 4514 . . . . . . . 8 (𝒫 𝑥 𝐴 ↔ ∀𝑢𝐴 𝒫 𝑥𝑢)
1813, 15, 173imtr4g 285 . . . . . . 7 (∀𝑢𝐴 𝑢 ∈ Univ → (𝑥 𝐴 → 𝒫 𝑥 𝐴))
1918imp 444 . . . . . 6 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
2019adantlr 751 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
21 r19.26 3093 . . . . . . . . . 10 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) ↔ (∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢))
22 grupr 9657 . . . . . . . . . . . 12 ((𝑢 ∈ Univ ∧ 𝑥𝑢𝑦𝑢) → {𝑥, 𝑦} ∈ 𝑢)
23223expia 1286 . . . . . . . . . . 11 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → (𝑦𝑢 → {𝑥, 𝑦} ∈ 𝑢))
2423ral2imi 2976 . . . . . . . . . 10 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) → (∀𝑢𝐴 𝑦𝑢 → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢))
2521, 24sylbir 225 . . . . . . . . 9 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (∀𝑢𝐴 𝑦𝑢 → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢))
26 vex 3234 . . . . . . . . . 10 𝑦 ∈ V
2726elint2 4514 . . . . . . . . 9 (𝑦 𝐴 ↔ ∀𝑢𝐴 𝑦𝑢)
28 prex 4939 . . . . . . . . . 10 {𝑥, 𝑦} ∈ V
2928elint2 4514 . . . . . . . . 9 ({𝑥, 𝑦} ∈ 𝐴 ↔ ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢)
3025, 27, 293imtr4g 285 . . . . . . . 8 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (𝑦 𝐴 → {𝑥, 𝑦} ∈ 𝐴))
3115, 30sylan2b 491 . . . . . . 7 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦 𝐴 → {𝑥, 𝑦} ∈ 𝐴))
3231ralrimiv 2994 . . . . . 6 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
3332adantlr 751 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
34 elmapg 7912 . . . . . . . . . 10 (( 𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
3514, 34mpan2 707 . . . . . . . . 9 ( 𝐴 ∈ V → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
362, 35sylbi 207 . . . . . . . 8 (𝐴 ≠ ∅ → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
3736ad2antlr 763 . . . . . . 7 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦 ∈ ( 𝐴𝑚 𝑥) ↔ 𝑦:𝑥 𝐴))
38 intss1 4524 . . . . . . . . . . . 12 (𝑢𝐴 𝐴𝑢)
39 fss 6094 . . . . . . . . . . . 12 ((𝑦:𝑥 𝐴 𝐴𝑢) → 𝑦:𝑥𝑢)
4038, 39sylan2 490 . . . . . . . . . . 11 ((𝑦:𝑥 𝐴𝑢𝐴) → 𝑦:𝑥𝑢)
4140ralrimiva 2995 . . . . . . . . . 10 (𝑦:𝑥 𝐴 → ∀𝑢𝐴 𝑦:𝑥𝑢)
42 gruurn 9658 . . . . . . . . . . . . . 14 ((𝑢 ∈ Univ ∧ 𝑥𝑢𝑦:𝑥𝑢) → ran 𝑦𝑢)
43423expia 1286 . . . . . . . . . . . . 13 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → (𝑦:𝑥𝑢 ran 𝑦𝑢))
4443ral2imi 2976 . . . . . . . . . . . 12 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4521, 44sylbir 225 . . . . . . . . . . 11 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4615, 45sylan2b 491 . . . . . . . . . 10 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4741, 46syl5 34 . . . . . . . . 9 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 → ∀𝑢𝐴 ran 𝑦𝑢))
4826rnex 7142 . . . . . . . . . . 11 ran 𝑦 ∈ V
4948uniex 6995 . . . . . . . . . 10 ran 𝑦 ∈ V
5049elint2 4514 . . . . . . . . 9 ( ran 𝑦 𝐴 ↔ ∀𝑢𝐴 ran 𝑦𝑢)
5147, 50syl6ibr 242 . . . . . . . 8 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 ran 𝑦 𝐴))
5251adantlr 751 . . . . . . 7 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 ran 𝑦 𝐴))
5337, 52sylbid 230 . . . . . 6 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦 ∈ ( 𝐴𝑚 𝑥) → ran 𝑦 𝐴))
5453ralrimiv 2994 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴)
5520, 33, 543jca 1261 . . . 4 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))
5655ralrimiva 2995 . . 3 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))
574, 56sylanb 488 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))
58 elgrug 9652 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Univ ↔ (Tr 𝐴 ∧ ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))))
5958biimpar 501 . 2 (( 𝐴 ∈ V ∧ (Tr 𝐴 ∧ ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴𝑚 𝑥) ran 𝑦 𝐴))) → 𝐴 ∈ Univ)
603, 10, 57, 59syl12anc 1364 1 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wcel 2030  wne 2823  wral 2941  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191  {cpr 4212   cuni 4468   cint 4507  Tr wtr 4785  ran crn 5144  wf 5922  (class class class)co 6690  𝑚 cmap 7899  Univcgru 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-gru 9651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator