MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfracq Structured version   Visualization version   GIF version

Theorem intfracq 12872
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 12871. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1 𝑍 = (⌊‘(𝑀 / 𝑁))
intfracq.2 𝐹 = ((𝑀 / 𝑁) − 𝑍)
Assertion
Ref Expression
intfracq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))

Proof of Theorem intfracq
StepHypRef Expression
1 zre 11593 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21adantr 472 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
3 nnre 11239 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
43adantl 473 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5 nnne0 11265 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
65adantl 473 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
72, 4, 6redivcld 11065 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
8 intfracq.1 . . . . 5 𝑍 = (⌊‘(𝑀 / 𝑁))
9 intfracq.2 . . . . 5 𝐹 = ((𝑀 / 𝑁) − 𝑍)
108, 9intfrac2 12871 . . . 4 ((𝑀 / 𝑁) ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
117, 10syl 17 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
1211simp1d 1137 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐹)
13 fraclt1 12817 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℝ → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
147, 13syl 17 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
158oveq2i 6825 . . . . . . . 8 ((𝑀 / 𝑁) − 𝑍) = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
169, 15eqtri 2782 . . . . . . 7 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
1716a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))))
18 nncn 11240 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1918, 5dividd 11011 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
2019adantl 473 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
2114, 17, 203brtr4d 4836 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 < (𝑁 / 𝑁))
22 reflcl 12811 . . . . . . . . . 10 ((𝑀 / 𝑁) ∈ ℝ → (⌊‘(𝑀 / 𝑁)) ∈ ℝ)
237, 22syl 17 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℝ)
248, 23syl5eqel 2843 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℝ)
257, 24resubcld 10670 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − 𝑍) ∈ ℝ)
269, 25syl5eqel 2843 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ ℝ)
27 nngt0 11261 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
283, 27jca 555 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2928adantl 473 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
30 ltmuldiv2 11109 . . . . . 6 ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3126, 4, 29, 30syl3anc 1477 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3221, 31mpbird 247 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) < 𝑁)
339oveq2i 6825 . . . . . . 7 (𝑁 · 𝐹) = (𝑁 · ((𝑀 / 𝑁) − 𝑍))
3418adantl 473 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
357recnd 10280 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
367flcld 12813 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
378, 36syl5eqel 2843 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℤ)
3837zcnd 11695 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℂ)
3934, 35, 38subdid 10698 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · ((𝑀 / 𝑁) − 𝑍)) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
4033, 39syl5eq 2806 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
41 zcn 11594 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4241adantr 472 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
4342, 34, 6divcan2d 11015 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
44 simpl 474 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
4543, 44eqeltrd 2839 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) ∈ ℤ)
46 nnz 11611 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4746adantl 473 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4847, 37zmulcld 11700 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑍) ∈ ℤ)
4945, 48zsubcld 11699 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)) ∈ ℤ)
5040, 49eqeltrd 2839 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ∈ ℤ)
51 zltlem1 11642 . . . . 5 (((𝑁 · 𝐹) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
5250, 47, 51syl2anc 696 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
5332, 52mpbid 222 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ≤ (𝑁 − 1))
54 peano2rem 10560 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
553, 54syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5655adantl 473 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
57 lemuldiv2 11116 . . . 4 ((𝐹 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5826, 56, 29, 57syl3anc 1477 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5953, 58mpbid 222 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ≤ ((𝑁 − 1) / 𝑁))
6011simp3d 1139 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) = (𝑍 + 𝐹))
6112, 59, 603jca 1123 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  cn 11232  cz 11589  cfl 12805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fl 12807
This theorem is referenced by:  fldiv  12873
  Copyright terms: Public domain W3C validator