![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version |
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | inteq 4630 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∩ cint 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-int 4628 |
This theorem is referenced by: intprg 4663 elreldm 5505 ordintdif 5935 fniinfv 6419 onsucmin 7186 elxp5 7276 1stval2 7350 2ndval2 7351 fundmen 8195 xpsnen 8209 unblem2 8378 unblem3 8379 fiint 8402 elfi2 8485 fi0 8491 elfiun 8501 tcvalg 8787 tz9.12lem3 8825 rankvalb 8833 rankvalg 8853 ranksnb 8863 rankonidlem 8864 cardval3 8968 cardidm 8975 cfval 9261 cflim3 9276 coftr 9287 isfin3ds 9343 fin23lem17 9352 fin23lem39 9364 isf33lem 9380 isf34lem5 9392 isf34lem6 9394 wuncval 9756 tskmval 9853 cleq1 13923 dfrtrcl2 14001 mrcfval 16470 mrcval 16472 cycsubg2 17832 efgval 18330 lspfval 19175 lspval 19177 lsppropd 19220 aspval 19530 aspval2 19549 clsfval 21031 clsval 21043 clsval2 21056 hauscmplem 21411 cmpfi 21413 1stcfb 21450 fclscmp 22035 spanval 28501 chsupid 28580 sigagenval 30512 kur14 31505 mclsval 31767 scutval 32217 igenval 34173 pclfvalN 35678 pclvalN 35679 diaintclN 36849 docaffvalN 36912 docafvalN 36913 docavalN 36914 dibintclN 36958 dihglb2 37133 dihintcl 37135 mzpval 37797 dnnumch3lem 38118 aomclem8 38133 rgspnval 38240 iotain 39120 salgenval 41044 |
Copyright terms: Public domain | W3C validator |