MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intasym Structured version   Visualization version   GIF version

Theorem intasym 5669
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5661 . . 3 Rel 𝑅
2 relin2 5393 . . 3 (Rel 𝑅 → Rel (𝑅𝑅))
3 ssrel 5364 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I )))
41, 2, 3mp2b 10 . 2 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ))
5 elin 3939 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
6 df-br 4805 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 vex 3343 . . . . . . . 8 𝑥 ∈ V
8 vex 3343 . . . . . . . 8 𝑦 ∈ V
97, 8brcnv 5460 . . . . . . 7 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 df-br 4805 . . . . . . 7 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
119, 10bitr3i 266 . . . . . 6 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
126, 11anbi12i 735 . . . . 5 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
135, 12bitr4i 267 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
14 df-br 4805 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
158ideq 5430 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
1614, 15bitr3i 266 . . . 4 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1713, 16imbi12i 339 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
18172albii 1897 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
194, 18bitri 264 1 ((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1630  wcel 2139  cin 3714  wss 3715  cop 4327   class class class wbr 4804   I cid 5173  ccnv 5265  Rel wrel 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator