![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inss | Structured version Visualization version GIF version |
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
Ref | Expression |
---|---|
inss | ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssinss1 3990 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
2 | incom 3956 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
3 | ssinss1 3990 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐴) ⊆ 𝐶) | |
4 | 2, 3 | syl5eqss 3798 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
5 | 1, 4 | jaoi 846 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 ∩ cin 3722 ⊆ wss 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-in 3730 df-ss 3737 |
This theorem is referenced by: pmatcoe1fsupp 20726 ppttop 21032 inindif 29691 iunrelexp0 38520 ntrclsk3 38894 icccncfext 40615 |
Copyright terms: Public domain | W3C validator |