![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inn0f | Structured version Visualization version GIF version |
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
inn0f.1 | ⊢ Ⅎ𝑥𝐴 |
inn0f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
inn0f | ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3947 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | exbii 1924 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
3 | inn0f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | inn0f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 3, 4 | nfin 3969 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
6 | 5 | n0f 4076 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵)) |
7 | df-rex 3067 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
8 | 2, 6, 7 | 3bitr4i 292 | 1 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∃wex 1852 ∈ wcel 2145 Ⅎwnfc 2900 ≠ wne 2943 ∃wrex 3062 ∩ cin 3722 ∅c0 4063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-in 3730 df-nul 4064 |
This theorem is referenced by: inn0 39765 |
Copyright terms: Public domain | W3C validator |