Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  injust Structured version   Visualization version   GIF version

Theorem injust 3729
 Description: Soundness justification theorem for df-in 3730. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
injust {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem injust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2833 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2833 . . . 4 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
31, 2anbi12d 616 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝐵) ↔ (𝑧𝐴𝑧𝐵)))
43cbvabv 2896 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
5 eleq1w 2833 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
6 eleq1w 2833 . . . 4 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
75, 6anbi12d 616 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴𝑧𝐵) ↔ (𝑦𝐴𝑦𝐵)))
87cbvabv 2896 . 2 {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
94, 8eqtri 2793 1 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 382   = wceq 1631   ∈ wcel 2145  {cab 2757 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator