Step | Hyp | Ref
| Expression |
1 | | elfznelfzo 12765 |
. . . . . . 7
⊢ ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑌 = 0 ∨ 𝑌 = 𝐾)) |
2 | | fvinim0ffz 12779 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
3 | | df-nel 3034 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))) |
4 | | fveq2 6350 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
𝑌 → (𝐹‘0) = (𝐹‘𝑌)) |
5 | 4 | eqcoms 2766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑌 = 0 → (𝐹‘0) = (𝐹‘𝑌)) |
6 | 5 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 = 0 → ((𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
7 | 6 | notbid 307 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
8 | 7 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
9 | | ffn 6204 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:(0...𝐾)⟶𝑉 → 𝐹 Fn (0...𝐾)) |
10 | | 1eluzge0 11923 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
(ℤ≥‘0) |
11 | | fzoss1 12687 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
(ℤ≥‘0) → (1..^𝐾) ⊆ (0..^𝐾)) |
12 | 10, 11 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐾 ∈ ℕ0
→ (1..^𝐾) ⊆
(0..^𝐾)) |
13 | | fzossfz 12680 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(0..^𝐾) ⊆
(0...𝐾) |
14 | 12, 13 | syl6ss 3754 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 ∈ ℕ0
→ (1..^𝐾) ⊆
(0...𝐾)) |
15 | | fvelimab 6413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 Fn (0...𝐾) ∧ (1..^𝐾) ⊆ (0...𝐾)) → ((𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌))) |
16 | 9, 14, 15 | syl2an 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌))) |
17 | 16 | notbid 307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (¬
(𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌))) |
18 | | ralnex 3128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
(1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌)) |
19 | | fveq2 6350 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 𝑋 → (𝐹‘𝑧) = (𝐹‘𝑋)) |
20 | 19 | eqeq1d 2760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑋 → ((𝐹‘𝑧) = (𝐹‘𝑌) ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) |
21 | 20 | notbid 307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑋 → (¬ (𝐹‘𝑧) = (𝐹‘𝑌) ↔ ¬ (𝐹‘𝑋) = (𝐹‘𝑌))) |
22 | 21 | rspcva 3445 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌)) → ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) |
23 | | pm2.21 120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (¬
(𝐹‘𝑋) = (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
24 | 23 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
(𝐹‘𝑋) = (𝐹‘𝑌) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
25 | 24 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
(𝐹‘𝑋) = (𝐹‘𝑌) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
26 | 22, 25 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
27 | 26 | expcom 450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑧 ∈
(1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌) → (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
28 | 27 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
(1..^𝐾) ¬ (𝐹‘𝑧) = (𝐹‘𝑌) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
29 | 18, 28 | sylbir 225 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
30 | 29 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (¬
∃𝑧 ∈ (1..^𝐾)(𝐹‘𝑧) = (𝐹‘𝑌) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
31 | 17, 30 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (¬
(𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
32 | 31 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
33 | 8, 32 | syl6com 37 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
34 | 3, 33 | sylbi 207 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
35 | 34 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
36 | 35 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = 0 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
37 | | df-nel 3034 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾))) |
38 | | fveq2 6350 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 = 𝑌 → (𝐹‘𝐾) = (𝐹‘𝑌)) |
39 | 38 | eqcoms 2766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑌 = 𝐾 → (𝐹‘𝐾) = (𝐹‘𝑌)) |
40 | 39 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 = 𝐾 → ((𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
41 | 40 | notbid 307 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 = 𝐾 → (¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
42 | 41 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑌 = 𝐾 → (¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹‘𝑌) ∈ (𝐹 “ (1..^𝐾)))) |
43 | 42, 32 | syl6com 37 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
44 | 37, 43 | sylbi 207 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
45 | 44 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
46 | 45 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = 𝐾 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
47 | 36, 46 | jaoi 393 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
48 | 47 | com13 88 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
49 | 2, 48 | sylbid 230 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
50 | 49 | com14 96 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (0...𝐾) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
51 | 50 | com12 32 |
. . . . . . . . . 10
⊢ (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
52 | 51 | com15 101 |
. . . . . . . . 9
⊢ (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
53 | | elfznelfzo 12765 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → (𝑋 = 0 ∨ 𝑋 = 𝐾)) |
54 | | eqtr3 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 0 ∧ 𝑌 = 0) → 𝑋 = 𝑌) |
55 | | 2a1 28 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = 𝑌 → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
56 | 55 | 2a1d 26 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 𝑌 → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
57 | 54, 56 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 0 ∧ 𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
58 | 5 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → (𝐹‘0) = (𝐹‘𝑌)) |
59 | | fveq2 6350 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 = 𝑋 → (𝐹‘𝐾) = (𝐹‘𝑋)) |
60 | 59 | eqcoms 2766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 𝐾 → (𝐹‘𝐾) = (𝐹‘𝑋)) |
61 | 60 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → (𝐹‘𝐾) = (𝐹‘𝑋)) |
62 | 58, 61 | neeq12d 2991 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → ((𝐹‘0) ≠ (𝐹‘𝐾) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
63 | | df-ne 2931 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑌) ≠ (𝐹‘𝑋) ↔ ¬ (𝐹‘𝑌) = (𝐹‘𝑋)) |
64 | | pm2.24 121 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑌) = (𝐹‘𝑋) → (¬ (𝐹‘𝑌) = (𝐹‘𝑋) → 𝑋 = 𝑌)) |
65 | 64 | eqcoms 2766 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑋) = (𝐹‘𝑌) → (¬ (𝐹‘𝑌) = (𝐹‘𝑋) → 𝑋 = 𝑌)) |
66 | 65 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝐹‘𝑌) = (𝐹‘𝑋) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
67 | 63, 66 | sylbi 207 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑌) ≠ (𝐹‘𝑋) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
68 | 62, 67 | syl6bi 243 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
69 | 68 | 2a1d 26 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
70 | | fveq2 6350 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 =
𝑋 → (𝐹‘0) = (𝐹‘𝑋)) |
71 | 70 | eqcoms 2766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 0 → (𝐹‘0) = (𝐹‘𝑋)) |
72 | 71 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹‘0) = (𝐹‘𝑋)) |
73 | 39 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹‘𝐾) = (𝐹‘𝑌)) |
74 | 72, 73 | neeq12d 2991 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
75 | | df-ne 2931 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) ↔ ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) |
76 | 75, 23 | sylbi 207 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
77 | 74, 76 | syl6bi 243 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
78 | 77 | 2a1d 26 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
79 | | eqtr3 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 𝐾) → 𝑋 = 𝑌) |
80 | 79, 56 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = 𝐾 ∧ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
81 | 57, 69, 78, 80 | ccase 1024 |
. . . . . . . . . . . 12
⊢ (((𝑋 = 0 ∨ 𝑋 = 𝐾) ∧ (𝑌 = 0 ∨ 𝑌 = 𝐾)) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))) |
82 | 81 | ex 449 |
. . . . . . . . . . 11
⊢ ((𝑋 = 0 ∨ 𝑋 = 𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
83 | 53, 82 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
84 | 83 | expcom 450 |
. . . . . . . . 9
⊢ (¬
𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
85 | 52, 84 | pm2.61i 176 |
. . . . . . . 8
⊢ (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
86 | 85 | com12 32 |
. . . . . . 7
⊢ ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
87 | 1, 86 | syl 17 |
. . . . . 6
⊢ ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
88 | 87 | ex 449 |
. . . . 5
⊢ (𝑌 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
89 | 88 | com23 86 |
. . . 4
⊢ (𝑌 ∈ (0...𝐾) → (𝑋 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))))))) |
90 | 89 | impcom 445 |
. . 3
⊢ ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
91 | 90 | com12 32 |
. 2
⊢ (¬
𝑌 ∈ (1..^𝐾) → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |
92 | 91 | com25 99 |
1
⊢ (¬
𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) |