Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inixp Structured version   Visualization version   GIF version

Theorem inixp 33854
 Description: Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
inixp (X𝑥𝐴 𝐵X𝑥𝐴 𝐶) = X𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem inixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 an4 900 . . . 4 (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ ((𝑓 Fn 𝐴𝑓 Fn 𝐴) ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
2 anidm 679 . . . . 5 ((𝑓 Fn 𝐴𝑓 Fn 𝐴) ↔ 𝑓 Fn 𝐴)
3 r19.26 3202 . . . . . 6 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
4 elin 3939 . . . . . . . 8 ((𝑓𝑥) ∈ (𝐵𝐶) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
54bicomi 214 . . . . . . 7 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ (𝑓𝑥) ∈ (𝐵𝐶))
65ralbii 3118 . . . . . 6 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶))
73, 6bitr3i 266 . . . . 5 ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶))
82, 7anbi12i 735 . . . 4 (((𝑓 Fn 𝐴𝑓 Fn 𝐴) ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
91, 8bitri 264 . . 3 (((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
10 vex 3343 . . . . 5 𝑓 ∈ V
1110elixp 8083 . . . 4 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1210elixp 8083 . . . 4 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
1311, 12anbi12i 735 . . 3 ((𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
1410elixp 8083 . . 3 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
159, 13, 143bitr4i 292 . 2 ((𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶) ↔ 𝑓X𝑥𝐴 (𝐵𝐶))
1615ineqri 3949 1 (X𝑥𝐴 𝐵X𝑥𝐴 𝐶) = X𝑥𝐴 (𝐵𝐶)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050   ∩ cin 3714   Fn wfn 6044  ‘cfv 6049  Xcixp 8076 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057  df-ixp 8077 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator