MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoid Structured version   Visualization version   GIF version

Theorem initoid 16862
Description: For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
initoid ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})

Proof of Theorem initoid
Dummy variables 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinitoi.b . . 3 𝐵 = (Base‘𝐶)
2 isinitoi.h . . 3 𝐻 = (Hom ‘𝐶)
3 isinitoi.c . . 3 (𝜑𝐶 ∈ Cat)
41, 2, 3isinitoi 16860 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)))
5 oveq2 6804 . . . . . . . 8 (𝑜 = 𝑂 → (𝑂𝐻𝑜) = (𝑂𝐻𝑂))
65eleq2d 2836 . . . . . . 7 (𝑜 = 𝑂 → ( ∈ (𝑂𝐻𝑜) ↔ ∈ (𝑂𝐻𝑂)))
76eubidv 2638 . . . . . 6 (𝑜 = 𝑂 → (∃! ∈ (𝑂𝐻𝑜) ↔ ∃! ∈ (𝑂𝐻𝑂)))
87rspcv 3456 . . . . 5 (𝑂𝐵 → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
98adantl 467 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → ∃! ∈ (𝑂𝐻𝑂)))
10 eusn 4402 . . . . 5 (∃! ∈ (𝑂𝐻𝑂) ↔ ∃(𝑂𝐻𝑂) = {})
11 eqid 2771 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
123ad2antrr 705 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝐶 ∈ Cat)
13 simpr 471 . . . . . . . . 9 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → 𝑂𝐵)
141, 2, 11, 12, 13catidcl 16550 . . . . . . . 8 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → ((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂))
15 fvex 6344 . . . . . . . . . . . . 13 ((Id‘𝐶)‘𝑂) ∈ V
1615elsn 4332 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) ∈ {} ↔ ((Id‘𝐶)‘𝑂) = )
17 eqcom 2778 . . . . . . . . . . . 12 (((Id‘𝐶)‘𝑂) = = ((Id‘𝐶)‘𝑂))
18 vex 3354 . . . . . . . . . . . . 13 ∈ V
19 sneqbg 4507 . . . . . . . . . . . . . 14 ( ∈ V → ({} = {((Id‘𝐶)‘𝑂)} ↔ = ((Id‘𝐶)‘𝑂)))
2019bicomd 213 . . . . . . . . . . . . 13 ( ∈ V → ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)}))
2118, 20ax-mp 5 . . . . . . . . . . . 12 ( = ((Id‘𝐶)‘𝑂) ↔ {} = {((Id‘𝐶)‘𝑂)})
2216, 17, 213bitri 286 . . . . . . . . . . 11 (((Id‘𝐶)‘𝑂) ∈ {} ↔ {} = {((Id‘𝐶)‘𝑂)})
2322biimpi 206 . . . . . . . . . 10 (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)})
2423a1i 11 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ {} → {} = {((Id‘𝐶)‘𝑂)}))
25 eleq2 2839 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) ↔ ((Id‘𝐶)‘𝑂) ∈ {}))
26 eqeq1 2775 . . . . . . . . 9 ((𝑂𝐻𝑂) = {} → ((𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)} ↔ {} = {((Id‘𝐶)‘𝑂)}))
2724, 25, 263imtr4d 283 . . . . . . . 8 ((𝑂𝐻𝑂) = {} → (((Id‘𝐶)‘𝑂) ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2814, 27syl5 34 . . . . . . 7 ((𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
2928exlimiv 2010 . . . . . 6 (∃(𝑂𝐻𝑂) = {} → (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3029com12 32 . . . . 5 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃(𝑂𝐻𝑂) = {} → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3110, 30syl5bi 232 . . . 4 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∃! ∈ (𝑂𝐻𝑂) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
329, 31syld 47 . . 3 (((𝜑𝑂 ∈ (InitO‘𝐶)) ∧ 𝑂𝐵) → (∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
3332expimpd 441 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → ((𝑂𝐵 ∧ ∀𝑜𝐵 ∃! ∈ (𝑂𝐻𝑜)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}))
344, 33mpd 15 1 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wex 1852  wcel 2145  ∃!weu 2618  wral 3061  Vcvv 3351  {csn 4317  cfv 6030  (class class class)co 6796  Basecbs 16064  Hom chom 16160  Catccat 16532  Idccid 16533  InitOcinito 16845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-cat 16536  df-cid 16537  df-inito 16848
This theorem is referenced by:  2initoinv  16867
  Copyright terms: Public domain W3C validator