Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem2 Structured version   Visualization version   GIF version

Theorem initoeu2lem2 16712
 Description: Lemma 2 for initoeu2 16713. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem2 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
Distinct variable groups:   𝐴,𝑔,𝑓   𝐵,𝑔,𝑓   𝐶,𝑓,𝑔   𝜑,𝑔,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓   𝐷,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝐾   𝑔,𝑋   ,𝑔

Proof of Theorem initoeu2lem2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ovex 6718 . . . . . . . . . 10 (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V
2 eleq1 2718 . . . . . . . . . . 11 (𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) → (𝑔 ∈ (𝐵𝐻𝐷) ↔ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
32spcegv 3325 . . . . . . . . . 10 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ V → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
41, 3mp1i 13 . . . . . . . . 9 (𝜑 → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
54com12 32 . . . . . . . 8 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
653ad2ant3 1104 . . . . . . 7 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝜑 → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
76com12 32 . . . . . 6 (𝜑 → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
87a1d 25 . . . . 5 (𝜑 → ((𝐴𝑋𝐵𝑋𝐷𝑋) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))))
983imp 1275 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
109adantr 480 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃𝑔 𝑔 ∈ (𝐵𝐻𝐷))
11 simpll1 1120 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝜑)
12 simpll2 1121 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
13 3simpb 1079 . . . . . . . . . . 11 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
14133ad2ant3 1104 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1514adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
1615adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
17 simplr 807 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
18 simpl32 1163 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
1918adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
20 simpr 476 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 ∈ (𝐵𝐻𝐷))
21 initoeu1.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
22 initoeu1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (InitO‘𝐶))
23 initoeu2lem.x . . . . . . . . . 10 𝑋 = (Base‘𝐶)
24 initoeu2lem.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
25 initoeu2lem.i . . . . . . . . . 10 𝐼 = (Iso‘𝐶)
26 initoeu2lem.o . . . . . . . . . 10 = (comp‘𝐶)
2721, 22, 23, 24, 25, 26initoeu2lem1 16711 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
2827imp 444 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝑔 ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
2911, 12, 16, 17, 19, 20, 28syl33anc 1381 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ 𝑔 ∈ (𝐵𝐻𝐷)) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3029adantrr 753 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
31 simpll1 1120 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝜑)
32 simpll2 1121 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐴𝑋𝐵𝑋𝐷𝑋))
3315adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)))
34 simplr 807 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷))
3518adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴𝐻𝐷))
36 simpr 476 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → ∈ (𝐵𝐻𝐷))
3721, 22, 23, 24, 25, 26initoeu2lem1 16711 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
3837imp 444 . . . . . . . 8 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
3931, 32, 33, 34, 35, 36, 38syl33anc 1381 . . . . . . 7 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ ∈ (𝐵𝐻𝐷)) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4039adantrl 752 . . . . . 6 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
4130, 40eqtr4d 2688 . . . . 5 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) ∧ (𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷))) → 𝑔 = )
4241ex 449 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
4342alrimivv 1896 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = ))
44 eleq1 2718 . . . 4 (𝑔 = → (𝑔 ∈ (𝐵𝐻𝐷) ↔ ∈ (𝐵𝐻𝐷)))
4544eu4 2547 . . 3 (∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷) ↔ (∃𝑔 𝑔 ∈ (𝐵𝐻𝐷) ∧ ∀𝑔((𝑔 ∈ (𝐵𝐻𝐷) ∧ ∈ (𝐵𝐻𝐷)) → 𝑔 = )))
4610, 43, 45sylanbrc 699 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) ∧ ∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷)) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷))
4746ex 449 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∃!weu 2498  Vcvv 3231  ⟨cop 4216  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  Hom chom 15999  compcco 16000  Catccat 16372  Isociso 16453  InitOcinito 16685 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-cat 16376  df-cid 16377  df-sect 16454  df-inv 16455  df-iso 16456 This theorem is referenced by:  initoeu2  16713
 Copyright terms: Public domain W3C validator