MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu1 Structured version   Visualization version   GIF version

Theorem initoeu1 16708
Description: Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
initoeu1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓

Proof of Theorem initoeu1
Dummy variables 𝑎 𝑔 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoeu1.a . . 3 (𝜑𝐴 ∈ (InitO‘𝐶))
2 eqid 2651 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2651 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
52, 3, 4isinitoi 16700 . . 3 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
61, 5mpdan 703 . 2 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
7 initoeu1.b . . . . 5 (𝜑𝐵 ∈ (InitO‘𝐶))
82, 3, 4isinitoi 16700 . . . . 5 ((𝜑𝐵 ∈ (InitO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)))
97, 8mpdan 703 . . . 4 (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)))
10 oveq2 6698 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐴(Hom ‘𝐶)𝑏) = (𝐴(Hom ‘𝐶)𝐵))
1110eleq2d 2716 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1211eubidv 2518 . . . . . . . 8 (𝑏 = 𝐵 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1312rspcv 3336 . . . . . . 7 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
14 eqid 2651 . . . . . . . . . . . . . 14 (Iso‘𝐶) = (Iso‘𝐶)
154adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
16 simprr 811 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
17 simprl 809 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
182, 3, 14, 15, 16, 17isohom 16483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
1918adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
20 euex 2522 . . . . . . . . . . . . . . 15 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
22 oveq2 6698 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → (𝐵(Hom ‘𝐶)𝑎) = (𝐵(Hom ‘𝐶)𝐴))
2322eleq2d 2716 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐴 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2423eubidv 2518 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝐴 → (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2524rspcva 3338 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
26 euex 2522 . . . . . . . . . . . . . . . . 17 (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2827ex 449 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2928ad2antll 765 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
30 eqid 2651 . . . . . . . . . . . . . . . . . . . . 21 (Inv‘𝐶) = (Inv‘𝐶)
3115ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
3216ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
3317ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
344, 1, 72initoinv 16707 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
35343exp 1283 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3736imp31 447 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
382, 30, 31, 32, 33, 14, 37inviso1 16473 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
3938ex 449 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4039eximdv 1886 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4140expcom 450 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4241exlimiv 1898 . . . . . . . . . . . . . . . 16 (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4342com3l 89 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4443impd 446 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4521, 29, 44syl2and 499 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4645imp 444 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
47 simprl 809 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
48 euelss 3947 . . . . . . . . . . . 12 (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4919, 46, 47, 48syl3anc 1366 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5049exp42 638 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5150com24 95 . . . . . . . . 9 (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5251com14 96 . . . . . . . 8 (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5352expd 451 . . . . . . 7 (𝐵 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5413, 53syldc 48 . . . . . 6 (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5554com15 101 . . . . 5 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5655impd 446 . . . 4 (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
579, 56mpd 15 . . 3 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
5857impd 446 . 2 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
596, 58mpd 15 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wex 1744  wcel 2030  ∃!weu 2498  wral 2941  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  Hom chom 15999  Catccat 16372  Invcinv 16452  Isociso 16453  InitOcinito 16685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-cat 16376  df-cid 16377  df-sect 16454  df-inv 16455  df-iso 16456  df-inito 16688
This theorem is referenced by:  initoeu1w  16709
  Copyright terms: Public domain W3C validator