MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iniseg Structured version   Visualization version   GIF version

Theorem iniseg 5636
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.)
Assertion
Ref Expression
iniseg (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem iniseg
StepHypRef Expression
1 elex 3360 . 2 (𝐵𝑉𝐵 ∈ V)
2 vex 3351 . . . 4 𝑥 ∈ V
32eliniseg 5634 . . 3 (𝐵 ∈ V → (𝑥 ∈ (𝐴 “ {𝐵}) ↔ 𝑥𝐴𝐵))
43abbi2dv 2889 . 2 (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
51, 4syl 17 1 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1629  wcel 2143  {cab 2755  Vcvv 3348  {csn 4313   class class class wbr 4783  ccnv 5247  cima 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pr 5033
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ral 3064  df-rex 3065  df-rab 3068  df-v 3350  df-sbc 3585  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-br 4784  df-opab 4844  df-xp 5254  df-cnv 5256  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261
This theorem is referenced by:  inisegn0  5637  dffr3  5638  dfse2  5639  dfpred2  5831
  Copyright terms: Public domain W3C validator