![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iniseg | Structured version Visualization version GIF version |
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
Ref | Expression |
---|---|
iniseg | ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3360 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | vex 3351 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | eliniseg 5634 | . . 3 ⊢ (𝐵 ∈ V → (𝑥 ∈ (◡𝐴 “ {𝐵}) ↔ 𝑥𝐴𝐵)) |
4 | 3 | abbi2dv 2889 | . 2 ⊢ (𝐵 ∈ V → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1629 ∈ wcel 2143 {cab 2755 Vcvv 3348 {csn 4313 class class class wbr 4783 ◡ccnv 5247 “ cima 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pr 5033 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ral 3064 df-rex 3065 df-rab 3068 df-v 3350 df-sbc 3585 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4784 df-opab 4844 df-xp 5254 df-cnv 5256 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 |
This theorem is referenced by: inisegn0 5637 dffr3 5638 dfse2 5639 dfpred2 5831 |
Copyright terms: Public domain | W3C validator |