Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inintabss Structured version   Visualization version   GIF version

Theorem inintabss 38403
Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
inintabss (𝐴 {𝑥𝜑}) ⊆ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)}
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem inintabss
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . . 4 (𝑢𝐴 → (∃𝑥𝜑𝑢𝐴))
21anim1i 594 . . 3 ((𝑢𝐴 ∧ ∀𝑥(𝜑𝑢𝑥)) → ((∃𝑥𝜑𝑢𝐴) ∧ ∀𝑥(𝜑𝑢𝑥)))
3 elinintab 38400 . . 3 (𝑢 ∈ (𝐴 {𝑥𝜑}) ↔ (𝑢𝐴 ∧ ∀𝑥(𝜑𝑢𝑥)))
4 vex 3352 . . . 4 𝑢 ∈ V
5 elinintrab 38402 . . . 4 (𝑢 ∈ V → (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝑢𝐴) ∧ ∀𝑥(𝜑𝑢𝑥))))
64, 5ax-mp 5 . . 3 (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝑢𝐴) ∧ ∀𝑥(𝜑𝑢𝑥)))
72, 3, 63imtr4i 281 . 2 (𝑢 ∈ (𝐴 {𝑥𝜑}) → 𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)})
87ssriv 3754 1 (𝐴 {𝑥𝜑}) ⊆ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1628   = wceq 1630  wex 1851  wcel 2144  {cab 2756  {crab 3064  Vcvv 3349  cin 3720  wss 3721  𝒫 cpw 4295   cint 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rab 3069  df-v 3351  df-in 3728  df-ss 3735  df-pw 4297  df-int 4610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator