![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inindi | Structured version Visualization version GIF version |
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
inindi | ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 3953 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | 1 | ineq1i 3941 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ (𝐵 ∩ 𝐶)) |
3 | in4 3960 | . 2 ⊢ ((𝐴 ∩ 𝐴) ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | |
4 | 2, 3 | eqtr3i 2772 | 1 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1620 ∩ cin 3702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-v 3330 df-in 3710 |
This theorem is referenced by: difundi 4010 dfif5 4234 resindi 5558 offres 7316 incexclem 14738 bitsinv1 15337 bitsinvp1 15344 bitsres 15368 fh1 28757 |
Copyright terms: Public domain | W3C validator |