![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxrgelb | Structured version Visualization version GIF version |
Description: The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infxrgelb | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12179 | . . . . . 6 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
3 | xrinfmss 12345 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑧 ∧ ∀𝑦 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑥 ∈ 𝐴 𝑥 < 𝑦))) | |
4 | id 22 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → 𝐴 ⊆ ℝ*) | |
5 | 2, 3, 4 | infglbb 8557 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (inf(𝐴, ℝ*, < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
6 | 5 | notbid 307 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ inf(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
7 | ralnex 3141 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵) | |
8 | 6, 7 | syl6bbr 278 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ inf(𝐴, ℝ*, < ) < 𝐵 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵)) |
9 | id 22 | . . 3 ⊢ (𝐵 ∈ ℝ* → 𝐵 ∈ ℝ*) | |
10 | infxrcl 12368 | . . 3 ⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | |
11 | xrlenlt 10309 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ¬ inf(𝐴, ℝ*, < ) < 𝐵)) | |
12 | 9, 10, 11 | syl2anr 584 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ¬ inf(𝐴, ℝ*, < ) < 𝐵)) |
13 | simplr 752 | . . . 4 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
14 | simpl 468 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ⊆ ℝ*) | |
15 | 14 | sselda 3752 | . . . 4 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
16 | 13, 15 | xrlenltd 10310 | . . 3 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) |
17 | 16 | ralbidva 3134 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵)) |
18 | 8, 12, 17 | 3bitr4d 300 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 ⊆ wss 3723 class class class wbr 4787 Or wor 5170 infcinf 8507 ℝ*cxr 10279 < clt 10280 ≤ cle 10281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-inf 8509 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 |
This theorem is referenced by: infxrre 12371 infxrss 12374 ixxlb 12402 limsuple 14417 limsupval2 14419 imasdsf1olem 22398 nmogelb 22740 metdsf 22871 metdsge 22872 ovolgelb 23468 ovolge0 23469 ovolsslem 23472 ovolicc2 23510 ismblfin 33783 infrpge 40080 infleinf2 40154 infxrgelbrnmpt 40196 inficc 40276 liminfgord 40501 liminflelimsuplem 40522 ovnhoilem2 41333 |
Copyright terms: Public domain | W3C validator |