MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm2 Structured version   Visualization version   GIF version

Theorem infxpidm2 8878
Description: The Cartesian product of an infinite set with itself is idempotent. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 9422. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxpidm2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpidm2
StepHypRef Expression
1 cardid2 8817 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8048 . . . . 5 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 xpen 8164 . . . . 5 ((𝐴 ≈ (card‘𝐴) ∧ 𝐴 ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
42, 2, 3syl2anc 694 . . . 4 (𝐴 ∈ dom card → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
54adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
6 cardon 8808 . . . 4 (card‘𝐴) ∈ On
7 cardom 8850 . . . . 5 (card‘ω) = ω
8 omelon 8581 . . . . . . . 8 ω ∈ On
9 onenon 8813 . . . . . . . 8 (ω ∈ On → ω ∈ dom card)
108, 9ax-mp 5 . . . . . . 7 ω ∈ dom card
11 carddom2 8841 . . . . . . 7 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
1210, 11mpan 706 . . . . . 6 (𝐴 ∈ dom card → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
1312biimpar 501 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴))
147, 13syl5eqssr 3683 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴))
15 infxpen 8875 . . . 4 (((card‘𝐴) ∈ On ∧ ω ⊆ (card‘𝐴)) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴))
166, 14, 15sylancr 696 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴))
17 entr 8049 . . 3 (((𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)) ∧ ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ (card‘𝐴))
185, 16, 17syl2anc 694 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ (card‘𝐴))
191adantr 480 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴)
20 entr 8049 . 2 (((𝐴 × 𝐴) ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2118, 19, 20syl2anc 694 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  wss 3607   class class class wbr 4685   × cxp 5141  dom cdm 5143  Oncon0 5761  cfv 5926  ωcom 7107  cen 7994  cdom 7995  cardccrd 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-card 8803
This theorem is referenced by:  infpwfien  8923  mappwen  8973  infcdaabs  9066  infxpdom  9071  fin67  9255  infxpidm  9422  ttac  37920
  Copyright terms: Public domain W3C validator