MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc Structured version   Visualization version   GIF version

Theorem infxpenc 8826
Description: A canonical version of infxpen 8822, by a completely different approach (although it uses infxpen 8822 via xpomen 8823). Using Cantor's normal form, we can show that 𝐴𝑜 𝐵 respects equinumerosity (oef1o 8580), so that all the steps of (ω↑𝑊) · (ω↑𝑊) ≈ ω↑(2𝑊) ≈ (ω↑2)↑𝑊 ≈ ω↑𝑊 can be verified using bijections to do the ordinal commutations. (The assumption on 𝑁 can be satisfied using cnfcom3c 8588.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc.1 (𝜑𝐴 ∈ On)
infxpenc.2 (𝜑 → ω ⊆ 𝐴)
infxpenc.3 (𝜑𝑊 ∈ (On ∖ 1𝑜))
infxpenc.4 (𝜑𝐹:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
infxpenc.5 (𝜑 → (𝐹‘∅) = ∅)
infxpenc.6 (𝜑𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊))
infxpenc.k 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
infxpenc.h 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊))
infxpenc.l 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
infxpenc.x 𝑋 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))
infxpenc.y 𝑌 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧))
infxpenc.j 𝐽 = (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·𝑜 2𝑜)))
infxpenc.z 𝑍 = (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦))
infxpenc.t 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
infxpenc.g 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
Assertion
Ref Expression
infxpenc (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑤,𝑦,𝑧,𝑊   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐴(𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝐿(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑌(𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem infxpenc
StepHypRef Expression
1 infxpenc.6 . . . 4 (𝜑𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊))
2 f1ocnv 6136 . . . 4 (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) → 𝑁:(ω ↑𝑜 𝑊)–1-1-onto𝐴)
31, 2syl 17 . . 3 (𝜑𝑁:(ω ↑𝑜 𝑊)–1-1-onto𝐴)
4 infxpenc.4 . . . . . . . 8 (𝜑𝐹:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
5 f1oi 6161 . . . . . . . . 9 ( I ↾ 𝑊):𝑊1-1-onto𝑊
65a1i 11 . . . . . . . 8 (𝜑 → ( I ↾ 𝑊):𝑊1-1-onto𝑊)
7 omelon 8528 . . . . . . . . . . 11 ω ∈ On
87a1i 11 . . . . . . . . . 10 (𝜑 → ω ∈ On)
9 2on 7553 . . . . . . . . . 10 2𝑜 ∈ On
10 oecl 7602 . . . . . . . . . 10 ((ω ∈ On ∧ 2𝑜 ∈ On) → (ω ↑𝑜 2𝑜) ∈ On)
118, 9, 10sylancl 693 . . . . . . . . 9 (𝜑 → (ω ↑𝑜 2𝑜) ∈ On)
129a1i 11 . . . . . . . . . 10 (𝜑 → 2𝑜 ∈ On)
13 peano1 7070 . . . . . . . . . . 11 ∅ ∈ ω
1413a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ ω)
15 oen0 7651 . . . . . . . . . 10 (((ω ∈ On ∧ 2𝑜 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑𝑜 2𝑜))
168, 12, 14, 15syl21anc 1323 . . . . . . . . 9 (𝜑 → ∅ ∈ (ω ↑𝑜 2𝑜))
17 ondif1 7566 . . . . . . . . 9 ((ω ↑𝑜 2𝑜) ∈ (On ∖ 1𝑜) ↔ ((ω ↑𝑜 2𝑜) ∈ On ∧ ∅ ∈ (ω ↑𝑜 2𝑜)))
1811, 16, 17sylanbrc 697 . . . . . . . 8 (𝜑 → (ω ↑𝑜 2𝑜) ∈ (On ∖ 1𝑜))
19 infxpenc.3 . . . . . . . . 9 (𝜑𝑊 ∈ (On ∖ 1𝑜))
2019eldifad 3579 . . . . . . . 8 (𝜑𝑊 ∈ On)
21 infxpenc.5 . . . . . . . 8 (𝜑 → (𝐹‘∅) = ∅)
22 infxpenc.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
23 infxpenc.h . . . . . . . 8 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊))
244, 6, 18, 20, 8, 20, 21, 22, 23oef1o 8580 . . . . . . 7 (𝜑𝐻:((ω ↑𝑜 2𝑜) ↑𝑜 𝑊)–1-1-onto→(ω ↑𝑜 𝑊))
25 f1oi 6161 . . . . . . . . . 10 ( I ↾ ω):ω–1-1-onto→ω
2625a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ ω):ω–1-1-onto→ω)
27 infxpenc.x . . . . . . . . . . 11 𝑋 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))
28 infxpenc.y . . . . . . . . . . 11 𝑌 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧))
2927, 28omf1o 8048 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2𝑜 ∈ On) → (𝑌𝑋):(𝑊 ·𝑜 2𝑜)–1-1-onto→(2𝑜 ·𝑜 𝑊))
3020, 9, 29sylancl 693 . . . . . . . . 9 (𝜑 → (𝑌𝑋):(𝑊 ·𝑜 2𝑜)–1-1-onto→(2𝑜 ·𝑜 𝑊))
31 ondif1 7566 . . . . . . . . . . 11 (ω ∈ (On ∖ 1𝑜) ↔ (ω ∈ On ∧ ∅ ∈ ω))
327, 13, 31mpbir2an 954 . . . . . . . . . 10 ω ∈ (On ∖ 1𝑜)
3332a1i 11 . . . . . . . . 9 (𝜑 → ω ∈ (On ∖ 1𝑜))
34 omcl 7601 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2𝑜 ∈ On) → (𝑊 ·𝑜 2𝑜) ∈ On)
3520, 9, 34sylancl 693 . . . . . . . . 9 (𝜑 → (𝑊 ·𝑜 2𝑜) ∈ On)
36 omcl 7601 . . . . . . . . . 10 ((2𝑜 ∈ On ∧ 𝑊 ∈ On) → (2𝑜 ·𝑜 𝑊) ∈ On)
3712, 20, 36syl2anc 692 . . . . . . . . 9 (𝜑 → (2𝑜 ·𝑜 𝑊) ∈ On)
38 fvresi 6424 . . . . . . . . . 10 (∅ ∈ ω → (( I ↾ ω)‘∅) = ∅)
3913, 38mp1i 13 . . . . . . . . 9 (𝜑 → (( I ↾ ω)‘∅) = ∅)
40 infxpenc.l . . . . . . . . 9 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
41 infxpenc.j . . . . . . . . 9 𝐽 = (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·𝑜 2𝑜)))
4226, 30, 33, 35, 8, 37, 39, 40, 41oef1o 8580 . . . . . . . 8 (𝜑𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 (2𝑜 ·𝑜 𝑊)))
43 oeoe 7664 . . . . . . . . . 10 ((ω ∈ On ∧ 2𝑜 ∈ On ∧ 𝑊 ∈ On) → ((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) = (ω ↑𝑜 (2𝑜 ·𝑜 𝑊)))
448, 12, 20, 43syl3anc 1324 . . . . . . . . 9 (𝜑 → ((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) = (ω ↑𝑜 (2𝑜 ·𝑜 𝑊)))
45 f1oeq3 6116 . . . . . . . . 9 (((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) = (ω ↑𝑜 (2𝑜 ·𝑜 𝑊)) → (𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) ↔ 𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 (2𝑜 ·𝑜 𝑊))))
4644, 45syl 17 . . . . . . . 8 (𝜑 → (𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) ↔ 𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 (2𝑜 ·𝑜 𝑊))))
4742, 46mpbird 247 . . . . . . 7 (𝜑𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊))
48 f1oco 6146 . . . . . . 7 ((𝐻:((ω ↑𝑜 2𝑜) ↑𝑜 𝑊)–1-1-onto→(ω ↑𝑜 𝑊) ∧ 𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊)) → (𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊))
4924, 47, 48syl2anc 692 . . . . . 6 (𝜑 → (𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊))
50 df-2o 7546 . . . . . . . . . . . 12 2𝑜 = suc 1𝑜
5150oveq2i 6646 . . . . . . . . . . 11 (𝑊 ·𝑜 2𝑜) = (𝑊 ·𝑜 suc 1𝑜)
52 1on 7552 . . . . . . . . . . . 12 1𝑜 ∈ On
53 omsuc 7591 . . . . . . . . . . . 12 ((𝑊 ∈ On ∧ 1𝑜 ∈ On) → (𝑊 ·𝑜 suc 1𝑜) = ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊))
5420, 52, 53sylancl 693 . . . . . . . . . . 11 (𝜑 → (𝑊 ·𝑜 suc 1𝑜) = ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊))
5551, 54syl5eq 2666 . . . . . . . . . 10 (𝜑 → (𝑊 ·𝑜 2𝑜) = ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊))
56 om1 7607 . . . . . . . . . . . 12 (𝑊 ∈ On → (𝑊 ·𝑜 1𝑜) = 𝑊)
5720, 56syl 17 . . . . . . . . . . 11 (𝜑 → (𝑊 ·𝑜 1𝑜) = 𝑊)
5857oveq1d 6650 . . . . . . . . . 10 (𝜑 → ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊) = (𝑊 +𝑜 𝑊))
5955, 58eqtrd 2654 . . . . . . . . 9 (𝜑 → (𝑊 ·𝑜 2𝑜) = (𝑊 +𝑜 𝑊))
6059oveq2d 6651 . . . . . . . 8 (𝜑 → (ω ↑𝑜 (𝑊 ·𝑜 2𝑜)) = (ω ↑𝑜 (𝑊 +𝑜 𝑊)))
61 oeoa 7662 . . . . . . . . 9 ((ω ∈ On ∧ 𝑊 ∈ On ∧ 𝑊 ∈ On) → (ω ↑𝑜 (𝑊 +𝑜 𝑊)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
628, 20, 20, 61syl3anc 1324 . . . . . . . 8 (𝜑 → (ω ↑𝑜 (𝑊 +𝑜 𝑊)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
6360, 62eqtrd 2654 . . . . . . 7 (𝜑 → (ω ↑𝑜 (𝑊 ·𝑜 2𝑜)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
64 f1oeq2 6115 . . . . . . 7 ((ω ↑𝑜 (𝑊 ·𝑜 2𝑜)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)) → ((𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊)))
6563, 64syl 17 . . . . . 6 (𝜑 → ((𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊)))
6649, 65mpbid 222 . . . . 5 (𝜑 → (𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊))
67 oecl 7602 . . . . . . 7 ((ω ∈ On ∧ 𝑊 ∈ On) → (ω ↑𝑜 𝑊) ∈ On)
688, 20, 67syl2anc 692 . . . . . 6 (𝜑 → (ω ↑𝑜 𝑊) ∈ On)
69 infxpenc.z . . . . . . 7 𝑍 = (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦))
7069omxpenlem 8046 . . . . . 6 (((ω ↑𝑜 𝑊) ∈ On ∧ (ω ↑𝑜 𝑊) ∈ On) → 𝑍:((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
7168, 68, 70syl2anc 692 . . . . 5 (𝜑𝑍:((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
72 f1oco 6146 . . . . 5 (((𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊) ∧ 𝑍:((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))) → ((𝐻𝐽) ∘ 𝑍):((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊))
7366, 71, 72syl2anc 692 . . . 4 (𝜑 → ((𝐻𝐽) ∘ 𝑍):((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊))
74 f1of 6124 . . . . . . . . . 10 (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) → 𝑁:𝐴⟶(ω ↑𝑜 𝑊))
751, 74syl 17 . . . . . . . . 9 (𝜑𝑁:𝐴⟶(ω ↑𝑜 𝑊))
7675feqmptd 6236 . . . . . . . 8 (𝜑𝑁 = (𝑥𝐴 ↦ (𝑁𝑥)))
77 f1oeq1 6114 . . . . . . . 8 (𝑁 = (𝑥𝐴 ↦ (𝑁𝑥)) → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
7876, 77syl 17 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
791, 78mpbid 222 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑𝑜 𝑊))
8075feqmptd 6236 . . . . . . . 8 (𝜑𝑁 = (𝑦𝐴 ↦ (𝑁𝑦)))
81 f1oeq1 6114 . . . . . . . 8 (𝑁 = (𝑦𝐴 ↦ (𝑁𝑦)) → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
8280, 81syl 17 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
831, 82mpbid 222 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑𝑜 𝑊))
8479, 83xpf1o 8107 . . . . 5 (𝜑 → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)))
85 infxpenc.t . . . . . 6 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
86 f1oeq1 6114 . . . . . 6 (𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩) → (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))))
8785, 86ax-mp 5 . . . . 5 (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)))
8884, 87sylibr 224 . . . 4 (𝜑𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)))
89 f1oco 6146 . . . 4 ((((𝐻𝐽) ∘ 𝑍):((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊) ∧ 𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))) → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑𝑜 𝑊))
9073, 88, 89syl2anc 692 . . 3 (𝜑 → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑𝑜 𝑊))
91 f1oco 6146 . . 3 ((𝑁:(ω ↑𝑜 𝑊)–1-1-onto𝐴 ∧ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑𝑜 𝑊)) → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
923, 90, 91syl2anc 692 . 2 (𝜑 → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
93 infxpenc.g . . 3 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
94 f1oeq1 6114 . . 3 (𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)) → (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴))
9593, 94ax-mp 5 . 2 (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
9692, 95sylibr 224 1 (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1481  wcel 1988  {crab 2913  cdif 3564  wss 3567  c0 3907  cop 4174   class class class wbr 4644  cmpt 4720   I cid 5013   × cxp 5102  ccnv 5103  cres 5106  ccom 5108  Oncon0 5711  suc csuc 5713  wf 5872  1-1-ontowf1o 5875  cfv 5876  (class class class)co 6635  cmpt2 6637  ωcom 7050  1𝑜c1o 7538  2𝑜c2o 7539   +𝑜 coa 7542   ·𝑜 comu 7543  𝑜 coe 7544  𝑚 cmap 7842   finSupp cfsupp 8260   CNF ccnf 8543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-seqom 7528  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-oexp 7551  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-oi 8400  df-cnf 8544
This theorem is referenced by:  infxpenc2lem2  8828
  Copyright terms: Public domain W3C validator