Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxp Structured version   Visualization version   GIF version

Theorem infxp 9249
 Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxp (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))

Proof of Theorem infxp
StepHypRef Expression
1 sdomdom 8151 . . 3 (𝐵𝐴𝐵𝐴)
2 infxpabs 9246 . . . . . 6 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
3 infunabs 9241 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
433expa 1112 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
54adantrl 754 . . . . . . 7 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴𝐵) ≈ 𝐴)
65ensymd 8174 . . . . . 6 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → 𝐴 ≈ (𝐴𝐵))
7 entr 8175 . . . . . 6 (((𝐴 × 𝐵) ≈ 𝐴𝐴 ≈ (𝐴𝐵)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
82, 6, 7syl2anc 696 . . . . 5 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
98expr 644 . . . 4 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵 ≠ ∅) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
109adantrl 754 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
111, 10syl5 34 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
12 domtri2 9025 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1312ad2ant2r 800 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
14 xpcomeng 8219 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
1514ad2ant2r 800 . . . . . 6 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
1615adantr 472 . . . . 5 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
17 simplrl 819 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
18 simplr 809 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → ω ≼ 𝐴)
19 domtr 8176 . . . . . . . 8 ((ω ≼ 𝐴𝐴𝐵) → ω ≼ 𝐵)
2018, 19sylan 489 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → ω ≼ 𝐵)
21 infn0 8389 . . . . . . . 8 (ω ≼ 𝐴𝐴 ≠ ∅)
2221ad3antlr 769 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐴 ≠ ∅)
23 simpr 479 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐴𝐵)
24 infxpabs 9246 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (𝐴 ≠ ∅ ∧ 𝐴𝐵)) → (𝐵 × 𝐴) ≈ 𝐵)
2517, 20, 22, 23, 24syl22anc 1478 . . . . . 6 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵 × 𝐴) ≈ 𝐵)
26 uncom 3900 . . . . . . . 8 (𝐴𝐵) = (𝐵𝐴)
27 infunabs 9241 . . . . . . . . 9 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2817, 20, 23, 27syl3anc 1477 . . . . . . . 8 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2926, 28syl5eqbr 4839 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
3029ensymd 8174 . . . . . 6 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐵 ≈ (𝐴𝐵))
31 entr 8175 . . . . . 6 (((𝐵 × 𝐴) ≈ 𝐵𝐵 ≈ (𝐴𝐵)) → (𝐵 × 𝐴) ≈ (𝐴𝐵))
3225, 30, 31syl2anc 696 . . . . 5 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵 × 𝐴) ≈ (𝐴𝐵))
33 entr 8175 . . . . 5 (((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴𝐵)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
3416, 32, 33syl2anc 696 . . . 4 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
3534ex 449 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴𝐵 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
3613, 35sylbird 250 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (¬ 𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
3711, 36pm2.61d 170 1 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∈ wcel 2139   ≠ wne 2932   ∪ cun 3713  ∅c0 4058   class class class wbr 4804   × cxp 5264  dom cdm 5266  ωcom 7231   ≈ cen 8120   ≼ cdom 8121   ≺ csdm 8122  cardccrd 8971 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-oi 8582  df-card 8975  df-cda 9202 This theorem is referenced by:  alephmul  9612
 Copyright terms: Public domain W3C validator